分析 (1)由余弦定理可得48=(a+b)2-3ab,利用三角形面积公式可求ab=32,联立即可解得a+b的值.
(2)由正弦定理,得a=8sinA,b=8sin B.又A+B=$\frac{2π}{3}$,利用三角形恒等变换的应用可求a+b=8$\sqrt{3}$sin(A+$\frac{π}{6}$).可求范围A∈($\frac{π}{6}$,$\frac{π}{2}$).由A+$\frac{π}{6}$∈($\frac{π}{3}$,$\frac{2π}{3}$),由正弦函数的图象和性质可求其取值范围.
解答 解:(1)∵C=60°,c=4$\sqrt{3}$.
∴由余弦定理可得:48=a2+b2-ab=(a+b)2-3ab,①
∵△ABC的面积为8$\sqrt{3}$=$\frac{1}{2}$absinC=$\frac{1}{2}×\frac{\sqrt{3}}{2}$ab,
∴解得:ab=32,②
∴联立①②,可得:a+b=12.
(2)由正弦定理,得$\frac{a}{sinA}$=$\frac{b}{sinB}$=$\frac{4\sqrt{3}}{sin60°}$=8,
由a=8sin A,b=8sin B.又A+B=$\frac{2π}{3}$,
则a+b=8sin A+8sin($\frac{2π}{3}$-A)=8sin A+8($\frac{\sqrt{3}}{2}$cosA+$\frac{1}{2}$sinA)=12sin A+4$\sqrt{3}$cosA=8$\sqrt{3}$sin(A+$\frac{π}{6}$).
因为△ABC为锐角三角形,
则A∈(0,$\frac{π}{2}$),且B=$\frac{2π}{3}$-A∈(0,$\frac{π}{2}$),得A∈($\frac{π}{6}$,$\frac{π}{2}$).
所以A+$\frac{π}{6}$∈($\frac{π}{3}$,$\frac{2π}{3}$),sin(A+$\frac{π}{6}$)∈($\frac{\sqrt{3}}{2}$,1],
故a+b的取值范围是(12,8$\sqrt{3}$].
点评 本题主要考查了余弦定理,三角形面积公式,正弦定理,三角形恒等变换的应用,正弦函数的图象和性质在解三角形中的应用,考查了计算能力和转化思想,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{5}$ | B. | -$\frac{4}{5}$ | C. | $\frac{5}{4}$ | D. | -$\frac{5}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-1) | B. | (1,2) | C. | {2,5} | D. | {x|x2≤1} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com