精英家教网 > 高中数学 > 题目详情
12.已知正数数列{an}的前n项和Sn,且an2+an-2Sn=0.
( I)求a1,a2的值;
( II)求此数列的通项an与前n项和Sn

分析 ( I)利用数列的递推关系式,通过n=1,2求解数列的a1,a2的值
( I)利用数列的关系式推出(an+an-1)(an-an-1-1)=0.判断{an}是等差数列,然后求和.

解答 解:( I)∵${a_n}^2+{a_n}-2{S_n}=0$,an>0
∴由${a_1}^2+{a_1}-2{a_1}=0$,得:a1=1; 由${a_2}^2+{a_2}-2({a_1}+{a_2})=0$,得:a2=2.
( II)∵$\left\{\begin{array}{l}{a_n}^2+{a_n}-2{S_n}=0\\{a_{n-1}}^2+{a_{n-1}}-2{S_{n-1}}=0(n≥2)\end{array}\right.$,
∴$({a_n}^2-{a_{n-1}}^2)+({a_n}-{a_{n-1}})-2{a_n}=0$,即(an+an-1)(an-an-1-1)=0.
∵an>0,
∴an-an-1-1=0即an-an-1=1(n≥2),∴{an}是等差数列,
∴an=a1+(n-1)d=1+(n-1)=n.${S_n}=\frac{{n({a_1}+{a_n})}}{2}=\frac{n(1+n)}{2}=\frac{{{n^2}+n}}{2}$.

点评 本题考查数列的递推关系式的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.设向量$\overrightarrow a$,$\overrightarrow b$不平行,向量$λ\overrightarrow a+\overrightarrow b$与$\overrightarrow a+2\overrightarrow b$平行,则实数λ等于(  )
A.2B.4C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,角A,B,C的对边长分别为a,b,c,C=60°,c=4$\sqrt{3}$.
(1)若△ABC的面积为8$\sqrt{3}$,求a+b的值;
(2)若△ABC为锐角三角形,求a+b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在等差数列{an}中,若a1,a3,a4成等比数列,则该等比数列的公比为(  )
A.$\frac{1}{2}$B.1C.1或$\frac{1}{2}$D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知数列{an}是首项为1,公差为d(d∈N*)的等差数列,若61是该数列中的一项,则公差d不可能是(  )
A.3B.5C.4D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知实数x,y满足-1≤x+y≤4且2≤x-y≤3,则不等式围成的区域面积为$\frac{5}{2}$,则2x-3y的取值范围是[3,8].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知数列{an}是等差数列,若a2=2,a3=-4,则a5等于(  )
A.8B.-8C.16D.-16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.计算题
(1)$\frac{1-2i}{3+4i}$
(2)设复数z满足i(z-4)=3+2i(i是虚数单位),求z.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.数列$(1+\frac{1}{2})$,$(2+\frac{2}{3})$,$(3+\frac{3}{4})$,$(4+\frac{4}{5})$…的一个通项n+$\frac{n}{n+1}$.

查看答案和解析>>

同步练习册答案