分析 三棱锥的三条侧棱两两垂直,扩展为长方体,二者的外接球是同一个,根据球的表面积,求出球的直径,就是长方体的对角线长,设出三度,利用基本不等式求出三棱锥外接球的直径的最值,从而得出该三棱锥外接球的表面积的最小值.
解答 解:三棱锥的三条侧棱两两垂直,扩展为长方体,二者的外接球是同一个,
因为三棱锥S-ABC的侧面积为2,
设长方体的三同一点出发的三条棱长为:a,b,c,
所以$\frac{1}{2}$(SA•SB+SA•SC+SB•SC)=$\frac{1}{2}$(ab+bc+ac)=2,
⇒ab+bc+ac=4,
该三棱锥外接球的直径2R就其长方体的对角线长,
从而有:(2R)2=a2+b2+c2≥ab+bc+ac=4,当且仅当a=b=c时取等号.
所以2R≥2⇒R≥1,
则该三棱锥外接球的表面积的最小值为4πR2=4π×12═4π
故答案为:4π
点评 本题是基础题,考查球的内接体知识,基本不等式的应用,考查空间想象能力,计算能力,三棱锥扩展为长方体是本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | $\sqrt{7}$ | C. | $\sqrt{19}$ | D. | $\sqrt{23}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | n2-n-6+3n+1 | B. | $\frac{{3}^{n+1}-3}{2}$ | ||
| C. | $\frac{4{n}^{2}-2n-23+{3}^{2n+1}}{2}$ | D. | $\frac{{n}^{2}-n-3+{3}^{n+1}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com