精英家教网 > 高中数学 > 题目详情
已知某商品的进货单价为1元/件,商户甲往年以单价2元/件销售该商品时,年销量为1万件,今年拟下调销售单价以提高销量,增加收益.据测算,若今年的实际销售单价为x元/件(1≤x≤2),今年新增的年销量(单位:万件)与(2-x)2成正比,比例系数为4.
(1)写出今年商户甲的收益y(单位:万元)与今年的实际销售单价x间的函数关系式;
(2)商户甲今年采取降低单价,提高销量的营销策略是否能获得比往年更大的收益(即比往年收益更多)?说明理由.
考点:导数在最大值、最小值问题中的应用
专题:导数的综合应用
分析:(1)直接根据题意可写出今年的销售量,从而可计算出客户甲的收益;
(2)根据(1)中建立的函数,求导,令导数等于0,求出极大值点和极大值,再求出x=2时的函数值,进行比较,最大的就是最大值.
解答: 解 (1)由题意知,今年的年销售量为1+4(x-2)2(万件).
∵每销售一件,商户甲可获利(x-1)元,
∴今年商户甲的收益
y=[1+4(x-2)2](x-1)
=4x3-20x2+33x-17,(1≤x≤2).
(2)由(1)知
y=4x3-20x2+33x-17,1≤x≤2,
∴y′=12x2-40x+33=(2x-3)(6x-11).
令y′=0,解得x=
3
2
,或x=
11
6
.列表如下:
      x (1,
3
2
3
2
3
2
11
6
11
6
11
6
,2)
f′(x) + 0 - 0 +
f(x) 递增 极大值 递减 极小值 递增
又f(
3
2
)=1,f(2)=1,
∴f(x)在区间[1,2]上的最大值为1(万元).
∵往年的收益为(2-1)×1=1(万元),
∴商户甲采取降低单价,提高销量的营销策略不能获得比往年更大的收益.
点评:本题主要考查实际问题中的数据提取和分析能力,考查导数再求函数最大值中的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,AB为圆O的直径,点C在圆周上(异于点A,B),直线PA垂直于圆O所在的平面,点M为线段PB的中点.有以下四个命题:
①PA∥平面MOB;②MO∥平面PAC;③OC⊥平面PAC;
④平面PAC⊥平面PBC.其中正确的命题是(  )
A、①和②B、②和③
C、③和④D、②和④

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,MN为两圆的公共弦,一条直线与两圆及公共弦依次交于A,B,C,D,E,求证:AB•CD=BC•DE.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1,已知⊙O的直径AB=4,点C、D为⊙O上两点,且∠CAB=45°,∠DAB=60°,F为弧BC的中点.将⊙O沿直径AB折起,使两个半圆所在平面互相垂直(如图2).
(Ⅰ)求证:OF∥AC;
(Ⅱ)在弧BD上是否存在点G,使得FG∥平面ACD?若存在,试指出点G的位置;若不存在,请说明理由;
(Ⅲ)求二面角C-AD-B的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的离心率为
3
2
,两个焦点分别为F1和F2,椭圆C上一点到F1和F2的距离之和为12.
(Ⅰ)求椭圆C的方程;
(Ⅱ) 设点B是椭圆C 的上顶点,点P,Q是椭圆上;异于点B的两点,且PB⊥QB,求证直线PQ经过y轴上一定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,设O,I分别为△ABC的外心、内心,且∠B=60°,AB>BC,∠A的外角平分线交⊙O于D,已知AD=18,则OI=

查看答案和解析>>

科目:高中数学 来源: 题型:

一个几何体的三视图如图所示,则该几何体的体积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若存在实数x使以
2x+4
+
1-x
>a成立,则常数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题正确的是
 
.(写出所有正确命题的序号)
①函数f(x)=cos2x-2
3
sinxcosx
在区间[-
π
6
π
3
]
上是单调递增的;
②在△ABC中,BC=1,B=60°,当△ABC的面积为
3
时,AB=4;
③若
a
为非零向量,且
a
b
=0,则满足条件的向量
b
有无数个;
④已知
π
2
<α<β<π
,且sinα=
5
5
,sinβ=
10
10
,则α+β=
4

查看答案和解析>>

同步练习册答案