精英家教网 > 高中数学 > 题目详情
如图,MN为两圆的公共弦,一条直线与两圆及公共弦依次交于A,B,C,D,E,求证:AB•CD=BC•DE.
考点:与圆有关的比例线段
专题:直线与圆
分析:由A,M,D,N四点共圆,得到AC•CD=MC•CN;由M,B,N,E四点共圆,得到BC•CE=MC•CN,由此能够证明AB•CD=BC•DE.
解答: 解:∴A,M,D,N四点共圆,
所以AC•CD=MC•CN
∵M,B,N,E四点共圆,
∴BC•CE=MC•CN,
∴AC•CD=BC•CE,
即(AB+BC)•CD=BC•(CD+DE),
∴AB•CD=BC•DE.
点评:本题考查四点共圆的性质的应用,是中档题,解题时要认真审题,注意相交弦定理的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列命题:
①“若ma2>na2,则m>n”的逆否命题;
②“若A与B是互斥事件,则A与B是对立事件”的逆命题;
③“在等差数列{an}中,若m+k=p+h,则am+ak=ap+ah”的否命题;
④“若|2x+2|<a的必要不充分条件是|x+1|<b(a>0,b>0),则2b<a”的逆否命题.
其中是假命题个数有(  )
A、0B、3C、2D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知⊙O的直径为10,弦AB=8,P是弦AB上一个动点,求OP长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD内接于圆O,∠BAD=60°,∠ABC=90°,BC=3,CD=5.求对角线BD、AC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0),左、右两个焦点分别为F1、F2,上顶点M(0,b),△MF1F2为正三角形且周长为6,直线l:x=my+4与椭圆C相交于A、B两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)求
OA
OB
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,梯形ABCD的底边AB在y轴上,原点O为AB的中点,|AB|=
4
2
3
,|CD|=2-
4
2
3
,AC⊥BD.M为CD的中点.
(Ⅰ)求点M的轨迹方程;
(Ⅱ)过M作AB的垂线,垂足为N,若存在正常数λ0,使
MP
0
PN
,且P点到A、B的距离和为定值,求点P的轨迹E的方程;
(Ⅲ)过(0,
1
2
)的直线与轨迹E交于P、Q两点,求△OPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,P是等边△ABC外接圆
BC
上任一点,求证:PA2=AC2+PB•PC.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某商品的进货单价为1元/件,商户甲往年以单价2元/件销售该商品时,年销量为1万件,今年拟下调销售单价以提高销量,增加收益.据测算,若今年的实际销售单价为x元/件(1≤x≤2),今年新增的年销量(单位:万件)与(2-x)2成正比,比例系数为4.
(1)写出今年商户甲的收益y(单位:万元)与今年的实际销售单价x间的函数关系式;
(2)商户甲今年采取降低单价,提高销量的营销策略是否能获得比往年更大的收益(即比往年收益更多)?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C1:y=-
1
2p
x2
(p>0)的焦点与双曲线C2
x2
3
-y2=1的左焦点的连线交C1于第三象限的点M.若C1在点M处的切线平行于C2的一条渐近线,则P=
 

查看答案和解析>>

同步练习册答案