精英家教网 > 高中数学 > 题目详情
在圆上任取一点,设点轴上的正投影为点.当点在圆上运动时,动点满足,动点形成的轨迹为曲线.
(1)求曲线的方程;
(2)已知点,若是曲线上的两个动点,且满足,求的取值范围.
(1);(2).

试题分析:(1)解法一是从条件得到点为线段的中点,设点,从而得到点的坐标为,利用点在圆上,其坐标满足圆的方程,代入化简得到曲线的方程;解法二是利用相关点法,设点,点,通过条件确定点与点的坐标之间的关系,并利用点的坐标表示点的坐标,再借助点在圆上,其坐标满足圆的方程,代入化简得到曲线的方程;(2)先利用条件化简为,并设点,从而得到的坐标表达式,结合点,将的代数式化为以的二次函数,结合的取值范围,求出的取值范围.
试题解析:(1)解法1:由知点为线段的中点.
设点的坐标是,则点的坐标是.
因为点在圆上,所以.
所以曲线的方程为
解法2:设点的坐标是,点的坐标是
得,
因为点在圆上, 所以.     ①
代入方程①,得
所以曲线的方程为
(2)解:因为,所以
所以
设点,则,即
所以
因为点在曲线上,所以
所以
所以的取值范围为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知二次函数在区间上有最大值,求实数的值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=,x∈[1,3],
(1)求f(x)的最大值与最小值;
(2)若于任意的x∈[1,3],t∈[0,2]恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数.
(Ⅰ) 若函数上为增函数, 求实数的取值范围;
(Ⅱ) 求证:当时,.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数若函数为奇函数,求的值.
(2)若,有唯一实数解,求的取值范围.
(3)若,则是否存在实数,使得函数的定义域和值域都为。若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数与函数的图像所有交点的橫坐标之和为        

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的定义域为,若时总有,则称为单函数,例如,函数是单函数.下列命题:
①函数是单函数;
②指数函数是单函数;
③若为单函数,,则
④在定义域上具有单调性的函数一定是单函数;
其中的真命题是________.(写出所有真命题的编号)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

关于x的函数上为减函数,则实数a的取值范围是(   )
A.(-∞,-1)B.(,0)C.(,0)D.(0,2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知定义在上的偶函数满足:,且当时,单调递减,给出以下四个命题:
;
为函数图像的一条对称轴;
③函数单调递增;
④若关于的方程上的两根,则.
以上命题中所有正确的命题的序号为_______________.

查看答案和解析>>

同步练习册答案