精英家教网 > 高中数学 > 题目详情
在△ABC中,角ABC的对边分别为abc,且2cos2cos B-sin(AB)sin B+cos(AC)=-.
(1)求cos A的值;
(2)若a=4b=5,求向量方向上的投影.
(1)-(2)
(1)由2cos2cos B-sin(AB)sin B+cos(AC)=-,得
[cos(AB)+1]cos B-sin(AB)sin B-cos B=-
∴cos(AB)cos B-sin(AB)sin B=-.
则cos(ABB)=-,即cos A=-.
(2)由cos A=-,0<A<π,得sin A
由正弦定理,有,所以,sin B.
由题知a>b,则A>B,故B
根据余弦定理,有(4)2=52c2-2×5c×
解得c=1或c=-7(舍去).
故向量方向上的投影为||cos B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

中,角的对边分别为,已知
(1)求证:
(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

中,角的对边分别为
(1)求的值;
(2)求的面积

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在△ABC中,内角A、B、C所对的边分别是a、b、c,已知b=2,B=30°,C=15°,则a等于(  )
(A)2     (B)2     (C)-     (D)4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在△ABC中,角ABC的对边分别为abc,且c=2,C=60°.
(1)求的值;
(2)若abab,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在△ABC中,a=3,b=2,∠B=2∠A.
(1)求cos A的值;
(2)求c的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知△ABC内角ABC的对边分别是abc,若cos Bb=2,sin C=2sin A,则△ABC的面积为(  ).
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在四边形ABCD中,已知ADCDAD=10,AB=14,∠BDA=60°,∠BCD=135°,则BC的长为 (  ).
A.8B.9
C.14   D.8

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

.已知M是△ABC内的一点,且,若△MBC, △MCA和△MAB的面积分别,则的最小值是        (    )
A.9B.18 C.16D.20

查看答案和解析>>

同步练习册答案