精英家教网 > 高中数学 > 题目详情
12.甲、乙两家商场对同一种商品展开促销活动,对购买该商品的顾客两家商场的奖励方案如下:甲商场:顾客转动如图所示转盘,当指针指向阴影部分(图中两个阴影部分均为扇形,且每个扇形圆心角均为$\frac{π}{4}$,边界忽略不计)即为中奖.乙商场:从装有4个白球,4个红球和4个篮球的盒子中一次性摸出3球(这些球初颜色外完全相同),如果摸到的是3个不同颜色的球,即为中奖.
(Ⅰ)试问:购买该商品的顾客在哪家商场中奖的可能性大?说明理由;
(Ⅱ)记在乙商场购买该商品的顾客摸到篮球的个数为X,求X的分布列及数学期望.

分析 (I)利用几何概率计算公式即可得出.
(II)利用超几何分布列的性质即可得出.

解答 解:(I)设顾客去甲商场转动圆盘,指针指向阴影部分为事件A,
食言的全部结果构成的区域为圆盘,面积为πr2(r为圆盘的半径),阴影区域的面积为$S=\frac{{\frac{π}{4}×2}}{2π}π{r^2}=\frac{1}{4}π{r^2}$.
所以$P(A)=\frac{{\frac{1}{4}π{r^2}}}{{π{r^2}}}=\frac{1}{4}$,
设顾客去乙商场一次摸出3个不同颜色的球为事件B,则一切等可能得结果有$C_{12}^1=220$种;
所以$P(B)=\frac{54}{220}=\frac{16}{55}$.
因为P(A)<P(B),所以顾客在乙商场中奖的可能性大些.
(Ⅱ)由题意知,X的取值为0,1,2,3.
则$P({X=0})=\frac{C_4^0C_8^3}{{C_{12}^3}}=\frac{12}{55}$,P(X=1)=$\frac{{∁}_{4}^{1}{∁}_{8}^{2}}{{∁}_{12}^{3}}$=$\frac{28}{55}$,$P({X=2})=\frac{C_4^2C_8^1}{{C_{12}^3}}=\frac{12}{55}$,$P({X=3})=\frac{C_4^3}{{C_{12}^3}}=\frac{1}{55}$,
所以X的分布列为

X0123
P$\frac{14}{55}$$\frac{28}{55}$$\frac{12}{55}$$\frac{1}{55}$
故ε的数学期望$E(X)=0×\frac{14}{55}+1×\frac{28}{55}+2×\frac{12}{55}+3×\frac{1}{55}=1$.

点评 本题考查了几何概率计算公式、超几何分布列的性质及其数学期望计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.男女生共8人,从中任选3人,出现2个男生,1个女生的概率为$\frac{15}{28}$,则其中女生人数是(  )
A.2人B.3人C.2人或3人D.4人

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求函数f(x)=ln(1+$\sqrt{{x}^{2}}$-x)在点x=1处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某市拟招商引资兴建一化工园区,新闻媒体对此进行了问卷调查,在所有参与调查的市民中,持“支持”、“保留”和“不支持”态度的人数如表所示:
支持保留不支持
30岁以下900120280
30岁以上(含30岁)300260140
(Ⅰ)在所有参与调查的人中,用分层抽样的方法抽取部分市民做进一步调研(不同态度的群体中亦按年龄分层抽样),已知从“保留”态度的人中抽取了19人,则在“支持”态度的群体中,年龄在30岁以上的人有多少人被抽取;
(Ⅱ)在持“不支持”态度的人中,用分层抽样的方法抽取6人做进一步的调研,将此6人看作一个总体,在这6人中任意选取2人,求至少有1人在30岁以上的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,ABED是长方形,平面ABED⊥平面ABC,AB=AC=5,BC=BE=6,且M是BC的中点
(Ⅰ) 求证:AM⊥平面BEC;
(Ⅱ) 求三棱锥B-ACE的体积;
(Ⅲ)若点Q是线段AD上的一点,且平面QEC⊥平面BEC,求线段AQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知数列{an}的前n项和为Sn,且Sn=2an-1,则$\frac{S_6}{a_6}$=(  )
A.$\frac{63}{32}$B.$\frac{31}{16}$C.$\frac{123}{64}$D.$\frac{127}{128}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.从长方体一个顶点出发的三条棱长分别为2、3、4,则其对角线的长为(  )
A.3B.5C.$\sqrt{26}$D.$\sqrt{29}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=ax2+bx+c(a≠0),设函数y=[f(x)]2+p•f(x)+q的零点所组成的集合为A,则以下集合不可能是A集合的序号为②④.
①$\left\{{\sqrt{2},\sqrt{3}}\right\}$
②$\left\{{\frac{1}{2},\frac{1}{3},\frac{1}{4}}\right\}$
③{-2,3,8}
④{-4,-1,0,2}
⑤{1,3,5,7}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=2sin(ωx+φ),$({ω>0,|φ|<\frac{π}{2}})$的最小正周期为π,且图象关于x=$\frac{π}{3}$对称.
(1)求ω和φ的值;
(2)将函数f(x)的图象上所有横坐标伸长到原来的4倍,再向右平移$\frac{π}{3}$个单位得到函数g(x)的图象,求g(x)的单调递增区间以及g(x)≥1的x取值范围.

查看答案和解析>>

同步练习册答案