精英家教网 > 高中数学 > 题目详情
8.已知f(x)=asinx+cosx,若f($\frac{π}{4}$+x)=f($\frac{π}{4}$-x),则f(x)的最大值为(  )
A.1B.$\sqrt{2}$C.2D.2$\sqrt{2}$

分析 由题意得f(x)的对称轴为$x=\frac{π}{4}$,及f(x)=$\sqrt{1+{a}^{2}}$sin(x+α),由此得到f(x)的最值的关系式,得到a=1,由此得到f(x)的最大值.

解答 选B.解:由题意得f(x)的对称轴为$x=\frac{π}{4}$,
f(x)=asinx+cosx=$\sqrt{1+{a}^{2}}$sin(x+α)
当$x=\frac{π}{4}$时,f(x)取得最值$\sqrt{{a^2}+1}$
即$\frac{{\sqrt{2}}}{2}({a+1})=\sqrt{{a^2}+1}$,得a=1,
∴f(x)的最大值为$\sqrt{2}$.
故选B.

点评 本题考查正弦函数图象和性质,是基础题,解题时要认真审题,仔细解答,注意合理地进行等价转化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x-aex,a∈R(e为自然对数的底数).
(1)若曲线y=f(x)在x=1处的切线与直线y=2x+4平行,求实数a的值;
(2)求函数f(x)的单调区间;
(3)若函数f(x)有两个零点x1,x2,且x1<x2.求证:x1+x2>2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知数列{an}满足an+1=an-1(n∈N+),且a2+a4+a6=18,则a5的值为(  )
A.8B.7C.6D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知$\overrightarrow a=(2,1),\overrightarrow b=(m,-1)$,$\overrightarrow a∥\overrightarrow b$,则m=(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知如图的程序,如果程序执行后输出的结果是990,那么在UNTIL后面的“条件”应为(  )
A.i>9B.i>=9C.i<=8D.i<8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图所示,已知|$\overrightarrow{OA}$|=1,|$\overrightarrow{OB}$|=$\sqrt{3}$,$\overrightarrow{OA}•\overrightarrow{OB}$=0,点C在线段AB上,且∠AOC=30°,设$\overrightarrow{OC}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$(m,n∈R),则m-n等于(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.-$\frac{1}{2}$D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=2sinx(sinx+cosx)
(I)求f(x)的对称中心的坐标和单调递增区间;
(Ⅱ)在锐角三角形ABC中,已知f(A)=2,角A,B,C所对的边分别为a,b,c,且a=2,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知全集U={2,3,5,7,9},A={2,|a-5|,7},CUA={5,9},则a的值为(  )
A.2B.8C.2或8D.-2或8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.△ABC的内角A,B,C的对边分别为a,b,c,已知A=30°,B=45°,a=$\sqrt{2}$.
(1)求b的长;
(2)求△ABC的面积.

查看答案和解析>>

同步练习册答案