精英家教网 > 高中数学 > 题目详情
6.已知数列{an}为等比数列,且a3=-4,a7=-16,则a5=(  )
A.8B.-8C.64D.-64

分析 由等比数列通项公式知${{a}_{5}}^{2}$=a3•a7,且${a}_{5}={a}_{3}{q}^{2}$=-4q2<0,由此能求出a5的值.

解答 解:∵数列{an}为等比数列,且a3=-4,a7=-16,
∴${{a}_{5}}^{2}$=a3•a7=(-4)•(-16)=64,且${a}_{5}={a}_{3}{q}^{2}$=-4q2<0,
∴a5=-8.
故选:B.

点评 本题考查等比数列的第5项的求法,考查等比数列的性质,考查推理论证能力、运算求解能力,考查转化化归思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.圆的任何一对平行切线间的距离总是相等的,即圆在任意方向都有相同的宽度,具有这种性质的曲线可称为“等宽曲线”.事实上存在着大量的非圆等宽曲线,以工艺学家鲁列斯( Reuleaux)命名的鲁列斯曲边三角形,就是著名的非圆等宽曲线.它的画法(如图1):画一个等边三角形ABC,分别以A,B,C为圆心,边长为半径,作圆弧$\widehat{BC},\widehat{CA},\widehat{AB}$,这三段圆弧围成的图形就是鲁列斯曲边三角形.它的宽度等于原来等边三角形的边长.等宽曲线都可以放在边长等于曲线宽度的正方形内(如图2).

在图2中的正方形内随机取一点,则这一点落在鲁列斯曲边三角形内的概率为(  )
A.$\frac{π}{8}$B.$\frac{{2π-3\sqrt{3}}}{4}$C.$\frac{{π-\sqrt{2}}}{2}$D.$\frac{{π-\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.为比较甲乙两地某月11时的气温情况,随机选取该月中的5天中11时的气温数据(位:℃)制成如图所示的茎叶图,已知甲地该月11时的平均气温比乙地该月11时的平均气温高1℃,则甲地该月11时的平均气温的标准差为(  )
A.2B.$\sqrt{2}$C.10D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知a,b,c分别为△ABC三个内角A,B,C的对边,且$acosC+\sqrt{3}asinC=b+c$.
(1)求A;
(2)若$a=\sqrt{7}$,△ABC的面积为$\frac{{3\sqrt{3}}}{2}$,求b与c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知向量$\overrightarrow{m}$=(-1,2),$\overrightarrow{n}$=(1,λ),若$\overrightarrow{m}$⊥$\overrightarrow{n}$,则$\overrightarrow{m}$+2$\overrightarrow{n}$与$\overrightarrow{m}$的夹角为(  )
A.$\frac{2π}{3}$B.$\frac{3π}{4}$C.$\frac{π}{3}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知平面内一动点M与两定点B1(0,-1)和B2(0,1)连线的斜率之积等于-$\frac{1}{2}$
(Ⅰ)求动点M的轨迹E的方程:
(Ⅱ)设直线l:y=x+m(m≠0)与轨迹E交于A、B两点,线段AB的垂直平分线交x轴于点P,当m变化时,求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知定义在R上的函数f(x)满足:①f(x)+f(2-x)=0;②f(x)-f(-2-x)=0;③在[-1,1]上的表达式为$f(x)=\left\{\begin{array}{l}\sqrt{1-{x^2}},x∈[-1,0]\\ 1-x,x∈(0,1]\end{array}\right.$,则函数f(x)与$g(x)=\left\{\begin{array}{l}{2^x},x≤0\\{log_{\frac{1}{2}}}x,x>0\end{array}\right.$的图象在区间[-3,3]上的交点的个数为6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.折纸已经成为开发少年儿童智力的一大重要工具和手段.已知在折叠“爱心”的过程中会产生如图所示的几何图形,其中四边形ABCD为正方形,G为线段BC的中点,四边形AEFG与四边形DGHI也为正方形,连接EB,CI,则向多边形AEFGHID中投掷一点,该点落在阴影部分内的概率为$\frac{\sqrt{3}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列命题为真命题的个数是(  )
①e${\;}^{\frac{2}{e}}$>2;②ln2>$\frac{2}{3}$;③$\frac{lnπ}{π}$<$\frac{1}{e}$;④$\frac{ln2}{2}$<$\frac{lnπ}{π}$.
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案