1£®ÒÑÖªÍÖÔ²C£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$µÄÀëÐÄÂÊΪ$\frac{{\sqrt{3}}}{2}$£¬ÓÒ¶¥µãAÊÇÅ×ÎïÏßy2=8xµÄ½¹µã£®Ö±Ïßl£ºy=k£¨x-1£©ÓëÍÖÔ²CÏཻÓÚP£¬QÁ½µã£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©Èç¹û$\overrightarrow{AM}=\overrightarrow{AP}+\overrightarrow{AQ}$£¬µãM¹ØÓÚÖ±ÏßlµÄ¶Ô³ÆµãNÔÚyÖáÉÏ£¬ÇókµÄÖµ£®

·ÖÎö £¨¢ñ£©È·¶¨ÍÖÔ²µÄ¼¸ºÎÁ¿£¬¼´¿ÉÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬Ö±Ïßl£ºy=k£¨x-1£©ÓëÍÖÔ²CÁªÁ¢£¬È·¶¨MµÄ×ø±ê£¬½øÒ»²½¿ÉµÃMNÖеã×ø±ê£¬ÓÉÓÚM£¬N¹ØÓÚÖ±Ïßl¶Ô³Æ£¬ËùÒÔM£¬NËùÔÚÖ±ÏßÓëÖ±Ïßl´¹Ö±£¬¼´¿ÉÇókµÄÖµ£®

½â´ð ½â£º£¨¢ñ£©Å×ÎïÏßy2=8x£¬
ËùÒÔ½¹µã×ø±êΪ£¨2£¬0£©£¬¼´A£¨2£¬0£©£¬
ËùÒÔa=2£®
ÓÖÒòΪe=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$£¬ËùÒÔc=$\sqrt{3}$£®
ËùÒÔb=1£¬
ËùÒÔÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{4}+{y}^{2}=1$£®                            ¡­£¨4·Ö£©
£¨¢ò£©ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬
ÒòΪ$\overrightarrow{AM}=\overrightarrow{AP}+\overrightarrow{AQ}$£¬
ËùÒÔ$\overrightarrow{AM}$=£¨x1+x2-4£¬y1+y2£©£¬
ËùÒÔM£¨x1+x2-2£¬y1+y2£©£®
ÓÉÖ±Ïßl£ºy=k£¨x-1£©ÓëÍÖÔ²CÁªÁ¢£¬µÃ£¨4k2+1£©x2-8k2x+4k2-4=0£¬
µÃx1+x2-2=-$\frac{2}{4{k}^{2}+1}$£¬y1+y2=$\frac{-2k}{4{k}^{2}+1}$£¬
¼´M£¨-$\frac{2}{4{k}^{2}+1}$£¬$\frac{-2k}{4{k}^{2}+1}$£©£®
ÉèN£¨0£¬y3£©£¬ÔòMNÖеã×ø±êΪ£¨-$\frac{1}{4{k}^{2}+1}$£¬$\frac{-k}{4{k}^{2}+1}+\frac{{y}_{3}}{2}$£©£¬
ÒòΪM£¬N¹ØÓÚÖ±Ïßl¶Ô³Æ£¬
ËùÒÔMNµÄÖеãÔÚÖ±ÏßlÉÏ£¬
ËùÒÔ$\frac{-k}{4{k}^{2}+1}+\frac{{y}_{3}}{2}$=k£¨-$\frac{1}{4{k}^{2}+1}$-1£©£¬½âµÃy3=-2k£¬¼´N£¨0£¬-2k£©£®
ÓÉÓÚM£¬N¹ØÓÚÖ±Ïßl¶Ô³Æ£¬ËùÒÔM£¬NËùÔÚÖ±ÏßÓëÖ±Ïßl´¹Ö±£¬
ËùÒÔ$\frac{\frac{-2k}{4{k}^{2}+1}-£¨-2k£©}{\frac{-2}{4{k}^{2}+1}-0}•k=-1$£¬½âµÃk=¡À$\frac{\sqrt{2}}{2}$£®               ¡­£¨14·Ö£©

µãÆÀ ±¾Ì⿼²éÅ×ÎïÏߵļ¸ºÎÐÔÖÊ£¬¿¼²éÍÖÔ²µÄ±ê×¼·½³Ì£¬¿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éѧÉúµÄ¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Ô²ÔÚxÖáÉϵĽؾàΪa£¬b£¬ÔÚyÖáÉÏÒԽؾàΪc£¨c¡Ù0£©£¬Çó´ËÔ²µÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖª¶¯µãPµ½Á½¸ö¶¨µãF1£¨-$\sqrt{2}$£¬0£©£¬F2£¨$\sqrt{2}$£¬0£©µÄ¾àÀëµÄºÍΪ¶¨Öµ4£®
£¨1£©ÇóµãPÔ˶¯Ëù³É¹ì¼£CµÄ·½³Ì£»
£¨2£©ÉèOÎª×ø±êÔ­µã£¬ÈôµãAÔڹ켣CÉÏ£¬µãBÔÚÖ±Ïßy=2ÉÏ£¬ÇÒOA¡ÍOB£¬ÊÔÅжÏÖ±ÏßABÓëÔ²x2+y2=2µÄλÖùØÏµ£¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®Èçͼ£¬Å×ÎïÏßC1£ºy2=2pxÓëÍÖÔ²C2£º$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1ÔÚµÚÒ»ÏóÏ޵Ľ»µãΪB£¬OÎª×ø±êÔ­µã£¬AΪÍÖÔ²µÄÓÒ¶¥µã£¬¡÷OABµÄÃæ»ýΪ$\frac{8\sqrt{6}}{3}$£®
£¨¢ñ£©ÇóÅ×ÎïÏßC1µÄ·½³Ì£»
£¨¢ò£©¹ýAµã×÷Ö±Ïßl½»C1ÓÚC¡¢D Á½µã£¬ÉäÏßOC¡¢OD·Ö±ð½»C2ÓÚE¡¢FÁ½µã£¬¼Ç¡÷OEFºÍ¡÷OCDµÄÃæ»ý·Ö±ðΪS1ºÍS2£¬ÎÊÊÇ·ñ´æÔÚÖ±Ïßl£¬Ê¹µÃS1£ºS2=3£º77£¿Èô´æÔÚ£¬Çó³öÖ±ÏßlµÄ·½³Ì£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÍÖÔ²$\frac{x{\;}^{2}}{a{\;}^{2}}$+$\frac{y{\;}^{2}}{b{\;}^{2}}$=1£¨a£¾b£¾0£©ÄÚ½ÓËıßÐÎABCD£¨µãA¡¢B¡¢C¡¢DÔÚÍÖÔ²ÉÏ£©µÄ¶Ô½ÇÏßAC¡¢BDÏཻÓÚP£¨$\frac{1}{b{\;}^{2}}$£¬$\frac{1}{a{\;}^{2}}$£©£¬ÇÒ$\overrightarrow{AP}$=¦Ë$\overrightarrow{PC}$£¬$\overrightarrow{BP}$=¦Ë$\overrightarrow{PD}$£¬ÔòÖ±ÏßABµÄбÂÊΪ£¨¡¡¡¡£©
A£®$\frac{-a{\;}^{2}-c{\;}^{2}}{c{\;}^{2}}$B£®$\frac{c£¨¦Ë-1£©}{a}$C£®-1D£®-2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªFΪÍÖÔ²C£º$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1µÄÓÒ½¹µã£¬ÍÖÔ²CÉÏÈÎÒâÒ»µãPµ½µãFµÄ¾àÀëÓëµãPµ½Ö±Ïßl£ºx=mµÄ¾àÀëÖ®±ÈΪ$\frac{1}{2}$£¬Çó£º
£¨1£©Ö±Ïßl·½³Ì£»
£¨2£©ÉèAΪÍÖÔ²CµÄ×󶥵㣬¹ýµãFµÄÖ±Ïß½»ÍÖÔ²CÓÚD¡¢EÁ½µã£¬Ö±ÏßAD¡¢AEÓëÖ±Ïßl·Ö±ðÏཻÓÚM¡¢NÁ½µã£®ÒÔMNΪֱ¾¶µÄÊÇÔ²ÊÇ·ñºã¹ýÒ»¶¨µã£¬ÈôÊÇ£¬Çó³ö¶¨µã×ø±ê£¬Èô²»ÊÇÇë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÔÚÕýÈýÀâ×¶P-ABCÖУ¬ÒÑÖªAÔÚ²àÃæPBCÉϵÄÉäӰΪµãH£¬Á¬½áPH²¢ÑÓ³¤BCÓÚµãD£¬ÇÒ$\frac{PH}{PD}=\frac{1}{4}$£¬Çó²àÃæÓëµ×ÃæËù³É¶þÃæ½ÇµÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®·â±ÕµÄ·½ºÐÄÚÓÐÁ½¸ö¸ô°å£¬°Ñ·½ºÐ¸ô³ÉÁËÈý¸öС·¿¼ä£¬Ã¿¸öС·¿¼äÄÚÓÐ2¸öÇò£¬Ã¿¸öÇòÉϸ÷ÓÐÒ»¸ö×Ö£¬Ð¡·¿¼äÄÚÇòÉϵÄ×ÖÇ¡ºÃ×é³ÉÈçͼËùʾµÄÈý¸ö´Ê£¨´Ó×óÏòÓÒÄ£®Ò¡¶¯·½ºÐ£¬ÇòÔÚС·¿¼äÄÚµÄ×óÓÒλÖÿÉÒԱ任£®
£¨1£©Í¼ÖÐ6¸öÇòͬʱÅÅÁгÉÕâÈý¸ö´ÊµÄ¸ÅÂÊÊǶàÉÙ£¿
£¨2£©È¡È¥ÆäÖÐÒ»¸ö¸ô°å£¬Ò¡¶¯·½ºÐ£¬6¸öÇòÄÜͬʱÅÅÁгÉÕâÈý¸ö´ÊµÄ¸ÅÂÊÓÖÊǶàÉÙ£¿
£¨3£©°ÑÁ½¸ö¸ô°åÈ«²¿È¡È¥£¬Ò¡¶¯·½ºÐ£¬6¸öÇòÄÜͬʱÅÅÁгÉÕâÈý¸ö´ÊµÄ¸ÅÂÊÓÖÊǶàÉÙ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®Ö¸Êý·½³Ì22x+1-9•2x+4=0µÄ½â¼¯ÊÇ£¨¡¡¡¡£©
A£®{2}B£®{-1}C£®{$\frac{1}{2}$}D£®{-1£¬2}

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸