精英家教网 > 高中数学 > 题目详情
11.指数方程22x+1-9•2x+4=0的解集是(  )
A.{2}B.{-1}C.{$\frac{1}{2}$}D.{-1,2}

分析 利用换元法,结合指数方程和一元二次方程之间的关系进行求解即可.

解答 解:由22x+1-9•2x+4=0得2•(2x2-9•2x+4=0,
设t=2x,则t>0,
则方程等价为2•t2-9•t+4=0,
即(t-4)(2t-1)=0,
解得t=4,或t=$\frac{1}{2}$,
由2x=4得x=2,
由2x=$\frac{1}{2}$得x=-1,
即方程的解集为{-1,2},
故选:D

点评 本题主要考查指数的方程的求解,利用换元法将方程转化为一元二次方程是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{3}}}{2}$,右顶点A是抛物线y2=8x的焦点.直线l:y=k(x-1)与椭圆C相交于P,Q两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)如果$\overrightarrow{AM}=\overrightarrow{AP}+\overrightarrow{AQ}$,点M关于直线l的对称点N在y轴上,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知O为坐标原点,A、B为曲线y=$\sqrt{x}$上的两个不同点,若$\overrightarrow{OA}$•$\overrightarrow{OB}$=6,则直线AB与圆x2+y2=$\frac{4}{9}$的位置关系是(  )
A.相交B.相离C.相交或相切D.相切或相离

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.写出下列数列的一个通项公式.
(1)1,-2,3,-4,5,…;
(2)7,77,777,7777,…;
(3)1$\frac{1}{2}$,3$\frac{1}{4}$,5$\frac{1}{8}$,7$\frac{1}{16}$,…;
(4)$\frac{{2}^{2}-1}{2}$,$\frac{{3}^{2}-1}{3}$,$\frac{{4}^{2}-1}{4}$,$\frac{{5}^{2}-1}{5}$,…;
(5)-$\frac{1}{1×2}$,$\frac{1}{2×3}$,-$\frac{1}{3×4}$,$\frac{1}{4×5}$,….

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如果不等式$\frac{x-a}{{x}^{2}+x+1}$>$\frac{x-b}{{x}^{2}-x+1}$的解集为($\frac{1}{2}$,1),则a•b=8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求($\frac{x}{2}$+$\frac{1}{x}$+$\sqrt{2}$)5展开式的常数项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.正三棱柱ABC-A1B1C1中,AB=BB1,D是BC的中点.
(1)求直线BB1与平面AC1D所成的余弦值;
(2)求二面角A1-AC1-D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知抛物线C:y2=2px(p>0)上的点(2,a)到焦点F的距离为3.
(Ⅰ)求抛物线的方程;
(Ⅱ)设动直线l与抛物线C相切于点A,且与其准线相交于点B,问在坐标平面内是否存在定点D,使得以AB为直径的圆恒过定点D?若存在,求出点D的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.“sin2θ<0”是“tanθ<0”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案