精英家教网 > 高中数学 > 题目详情
19.写出下列数列的一个通项公式.
(1)1,-2,3,-4,5,…;
(2)7,77,777,7777,…;
(3)1$\frac{1}{2}$,3$\frac{1}{4}$,5$\frac{1}{8}$,7$\frac{1}{16}$,…;
(4)$\frac{{2}^{2}-1}{2}$,$\frac{{3}^{2}-1}{3}$,$\frac{{4}^{2}-1}{4}$,$\frac{{5}^{2}-1}{5}$,…;
(5)-$\frac{1}{1×2}$,$\frac{1}{2×3}$,-$\frac{1}{3×4}$,$\frac{1}{4×5}$,….

分析 (1)分符号、绝对值可得${a}_{n}=(-1)^{n}n$;
(2)由于9,99,999,9999,…,其通项公式为${a}_{n}=1{0}^{n}-1$,即可得出7,77,777,7777,…其通项公式为:bn=$\frac{7}{9}(1{0}^{n}-1)$;
(3)把每一项分开可得:其通项公式为:an=(2n-1)+$\frac{1}{{2}^{4}}$;
(4)观察其分母为n+1,分子为(n+1)2-1,可得其通项公式为:an=$\frac{(n+1)^{2}-1}{n+1}$;
(5)分符号与分母可得:其通项公式为:$(-1)^{n}\frac{1}{n(n+1)}$.

解答 解:(1)1,-2,3,-4,5,…,可得${a}_{n}=(-1)^{n}n$;
(2)∵9,99,999,9999,…,其通项公式为${a}_{n}=1{0}^{n}-1$,∴7,77,777,7777,…其通项公式为:bn=$\frac{7}{9}(1{0}^{n}-1)$;
(3)1$\frac{1}{2}$,3$\frac{1}{4}$,5$\frac{1}{8}$,7$\frac{1}{16}$,…,其通项公式为:an=(2n-1)+$\frac{1}{{2}^{4}}$;
(4)$\frac{{2}^{2}-1}{2}$,$\frac{{3}^{2}-1}{3}$,$\frac{{4}^{2}-1}{4}$,$\frac{{5}^{2}-1}{5}$,…,其通项公式为:an=$\frac{(n+1)^{2}-1}{n+1}$;
(5)-$\frac{1}{1×2}$,$\frac{1}{2×3}$,-$\frac{1}{3×4}$,$\frac{1}{4×5}$,…,其通项公式为:$(-1)^{n}\frac{1}{n(n+1)}$.

点评 本题考查了通过观察分析猜想归纳求数列的通项公式的方法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.如图,抛物线C1:y2=2px与椭圆C2:$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1在第一象限的交点为B,O为坐标原点,A为椭圆的右顶点,△OAB的面积为$\frac{8\sqrt{6}}{3}$.
(Ⅰ)求抛物线C1的方程;
(Ⅱ)过A点作直线l交C1于C、D 两点,射线OC、OD分别交C2于E、F两点,记△OEF和△OCD的面积分别为S1和S2,问是否存在直线l,使得S1:S2=3:77?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.封闭的方盒内有两个隔板,把方盒隔成了三个小房间,每个小房间内有2个球,每个球上各有一个字,小房间内球上的字恰好组成如图所示的三个词(从左向右念).摇动方盒,球在小房间内的左右位置可以变换.
(1)图中6个球同时排列成这三个词的概率是多少?
(2)取去其中一个隔板,摇动方盒,6个球能同时排列成这三个词的概率又是多少?
(3)把两个隔板全部取去,摇动方盒,6个球能同时排列成这三个词的概率又是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知f(x)是定义在[-4,4]上的奇函数,当x>0时,f(x)=-x2+4x,则不等式f[f(x)]<f(x)的解集为(  )
A.(-3,0)∪(3,4]B.(-4,-3)∪(1,2)∪(2,3)C.(-1,0)∪(1,2)∪(2,3)D.(-4,-3)∪(-1,0)∪(1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.二次函数的图象与x轴只有一个交点,对称轴为x=3,与y轴交于点(0,3),则它的解析式为y=$\frac{1}{3}$x2-2x+3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=3x-x3,则函数y=f[f(x)]-1的零点个数为(  )
A.3B.5C.7D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.指数方程22x+1-9•2x+4=0的解集是(  )
A.{2}B.{-1}C.{$\frac{1}{2}$}D.{-1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x2-alnx(a∈R),g(x)=x2+(a+2)x+1
(1)求函数f(x)的单调区间
(2)若a>0,且对任意x1∈[-1,2],都存在x2∈(0,+∞),使得g(x1)=f(x2),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某程序框图如图所示,该程序运行后输出S的值是(  )
A.25B.55C.72D.110

查看答案和解析>>

同步练习册答案