精英家教网 > 高中数学 > 题目详情
7.已知f(x)是定义在[-4,4]上的奇函数,当x>0时,f(x)=-x2+4x,则不等式f[f(x)]<f(x)的解集为(  )
A.(-3,0)∪(3,4]B.(-4,-3)∪(1,2)∪(2,3)C.(-1,0)∪(1,2)∪(2,3)D.(-4,-3)∪(-1,0)∪(1,3)

分析 利用奇偶性求出函数f(x)在定义域[-4,4]上的解析式,结合不等式计算即可.

解答 解:∵f(x)是定义在[-4,4]上的奇函数,
∴当x=0时,f(0)=0,
下面求x∈[-4,0)时的f(x)的表达式,
设x∈[-4,0),则-x∈(0,4],
又∵当x>0时,f(x)=-x2+4x,
∴f(-x)=-(-x)2+4(-x)=-x2-4x,
又f(x)是定义在[-4,4]上的奇函数,
∴f(x)=-f(-x)=x2+4x,
∴f(x)=$\left\{\begin{array}{l}{{x}^{2}+4x,}&{x∈[-4,0]}\\{-{x}^{2}+4x,}&{x∈(0,4]}\end{array}\right.$,
令f(x)=0,解得x=-4或0或4,
当x∈[-4,0]时,不等式f[f(x)]<f(x),
即(x2+4x)2+4(x2+4x)<x2+4x,
化简得(x2+4x)2+3(x2+4x)<0,
解得x∈(-4,-3)∪(-1,0);
当x∈(0,4]时,不等式f[f(x)]<f(x),
即-(-x2+4x)2+4(-x2+4x)<-x2+4x,
化简得-(-x2+4x)2+3(-x2+4x)<0,
解得x∈(1,3);
综上所述,x∈(-4,-3)∪(-1,0)∪(1,3),
故选:D.

点评 本题考查函数的奇偶性,解不等式,考查分类讨论的思想,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.在棱长为1的正方体ABCD-A1B1C1D1中,M是A1D1的中点,点P在侧面BCC1B1上运动.现有下列命题:
①若点P总保持PA⊥BD1,则动点P的轨迹所在曲线是直线;
②若点P到点A的距离为$\frac{2\sqrt{3}}{3}$,则动点P的轨迹所在曲线是圆;
③若P满足∠MAP=∠MAC1,则动点P的轨迹所在曲线是椭圆;
④若P到直线BC与直线C1D1的距离比为1:2,则动点P的轨迹所在曲线是双曲线;
⑤若P到直线AD与直线CC1的距离相等,则动点P的轨迹所在曲线是抛物丝.
其中真命题是①②④(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某银行招聘,设置了A、B、C三组测试题供竞聘人员选择.现有五人参加招聘,经抽签决定甲、乙两人各自独立参加A组测试,丙独自参加B组测试,丁、戊两人各自独立参加C组测试.若甲、乙两人各自通过A组测试的概率均为$\frac{2}{3}$;丙通过B组测试的概率为$\frac{1}{2}$;而C组共设6道测试题,每个人必须且只能从中任选4题作答,至少答对3题者就竞聘成功.假设丁、戊都只能答对这6道测试题中4道题.
(Ⅰ)求丁、戊都竞聘成功的概率.
(Ⅱ)记A、B两组通过测试的总人数为ξ,求ξ的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某人在x天观察天气,共测得下列数据:①上午或下午共下雨7次;②有5个下午晴;③有6个上午晴;④当下午下雨时上午晴.则观察的x天数为(  )
A.11B.9C.7D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知O为坐标原点,A、B为曲线y=$\sqrt{x}$上的两个不同点,若$\overrightarrow{OA}$•$\overrightarrow{OB}$=6,则直线AB与圆x2+y2=$\frac{4}{9}$的位置关系是(  )
A.相交B.相离C.相交或相切D.相切或相离

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.(x-1)4=a0+a1(x+1)+a2(x+1)2+a3(x+1)3+a4(x+1)4,则a1=-32.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.写出下列数列的一个通项公式.
(1)1,-2,3,-4,5,…;
(2)7,77,777,7777,…;
(3)1$\frac{1}{2}$,3$\frac{1}{4}$,5$\frac{1}{8}$,7$\frac{1}{16}$,…;
(4)$\frac{{2}^{2}-1}{2}$,$\frac{{3}^{2}-1}{3}$,$\frac{{4}^{2}-1}{4}$,$\frac{{5}^{2}-1}{5}$,…;
(5)-$\frac{1}{1×2}$,$\frac{1}{2×3}$,-$\frac{1}{3×4}$,$\frac{1}{4×5}$,….

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求($\frac{x}{2}$+$\frac{1}{x}$+$\sqrt{2}$)5展开式的常数项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.假定某篮球运动员每次投篮命中率均为P(0<P<1).现有3次投篮机会,并规定连续两次投篮均不中即终止投篮.已知该运动员不放弃任何一次投篮机会,且恰用完3次投篮机会的概率是$\frac{21}{25}$
(1)求P的值;
(2)设该运动员投篮命中次数为ξ,求ξ的概率分布及数学期望E(ξ)

查看答案和解析>>

同步练习册答案