分析 由BD1⊥面AB1C,可得P在面AB1C和面BCC1B1的交线上判断①正确;由平面截球面轨迹是圆判断②正确;利用平面截圆锥侧面可得P点轨迹所在曲线是双曲线的一支,说明③错误;由双曲线定义说明④正确;建立空间坐标系,由|PF|=|PG|列式求出动点P的轨迹说明⑤错误.
解答 解:
对于①,∵BD1⊥面AB1C,∴动点P的轨迹所在曲线是直线B1C,①正确;
对于②,满足到点A的距离为$\frac{2\sqrt{3}}{3}$的点集是球,∴点P应为平面截球体所得截痕,即轨迹所在曲线为圆,②正确;
对于③,满足条件∠MAP=∠MAC1 的点P应为以AM为轴,以AC1 为母线的圆锥,平面BB1C1C是一个与轴AM平行的平面,
又点P在BB1C1C所在的平面上,故P点轨迹所在曲线是双曲线一支,③错误;
对于④,P到直线C1D1 的距离,即到点C1的距离与到直线BC的距离比为2:1,
∴动点P的轨迹所在曲线是以C1 为焦点,以直线BC为准线的双曲线,④正确;
对于⑤,如图建立空间直角坐标系,作PE⊥BC,EF⊥AD,PG⊥CC1,连接PF,
设点P坐标为(x,y,0),由|PF|=|PG|,得$\sqrt{1+{y}^{2}}=|x|$,即x2-y2=1,
∴P点轨迹所在曲线是双曲线,⑤错误.
故答案为:①②④.
点评 本题考查了命题的真假判断与应用,考查了圆锥曲线的定义和方方程,考查了学生的空间想象能力和思维能力,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\{\frac{1}{2},\frac{{\sqrt{2}}}{12}\}$ | B. | $\{\frac{1}{6},\frac{{\sqrt{3}}}{12}\}$ | C. | $\{\frac{{\sqrt{2}}}{12},\frac{{\sqrt{3}}}{12},\frac{{\sqrt{2}}}{24}\}$ | D. | $\{\frac{1}{6},\frac{{\sqrt{2}}}{12},\frac{{\sqrt{2}}}{24}\}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | BD∥平面CB1D1 | |
| B. | AC1⊥B1C | |
| C. | AC1⊥平面CB1D1 | |
| D. | 直线CC1与平面CB1D1所成的角为45° |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-3,0)∪(3,4] | B. | (-4,-3)∪(1,2)∪(2,3) | C. | (-1,0)∪(1,2)∪(2,3) | D. | (-4,-3)∪(-1,0)∪(1,3) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com