精英家教网 > 高中数学 > 题目详情
10.已知四面体A-BCD满足下列条件:
(1)有一个面是边长为1的等边三角形;
(2)有两个面是等腰直角三角形.
那么四面体A-BCD的体积的取值集合是(  )
A.$\{\frac{1}{2},\frac{{\sqrt{2}}}{12}\}$B.$\{\frac{1}{6},\frac{{\sqrt{3}}}{12}\}$C.$\{\frac{{\sqrt{2}}}{12},\frac{{\sqrt{3}}}{12},\frac{{\sqrt{2}}}{24}\}$D.$\{\frac{1}{6},\frac{{\sqrt{2}}}{12},\frac{{\sqrt{2}}}{24}\}$

分析 由题意,分类讨论,(1)△BCD是等边三角形,BA⊥AC,DA⊥AC;(2)△BCD是等边三角形,BA⊥BD,BA⊥BC;△BCD是等边三角形,BA⊥BD,DC⊥AC,求出体积即可.

解答 解:由题意,分类讨论可得
(1)△BCD是等边三角形,BA⊥AC,DA⊥AC,所以四面体A-BCD的体积为$\frac{1}{3}×\frac{1}{2}×\frac{\sqrt{2}}{2}×\frac{\sqrt{2}}{2}×\frac{\sqrt{2}}{2}$=$\frac{\sqrt{2}}{24}$;
(2)△BCD是等边三角形,BA⊥BD,BA⊥BC,所以四面体A-BCD的体积为$\frac{1}{3}×\frac{\sqrt{3}}{4}×1$=$\frac{\sqrt{3}}{12}$;
(3)△BCD是等边三角形,BA⊥BD,DC⊥AC,取AD的中点O,可得BO=DO=$\frac{\sqrt{2}}{2}$,所以四面体A-BCD的体积为$\frac{1}{3}×\frac{1}{2}×\frac{\sqrt{2}}{2}×\frac{\sqrt{2}}{2}×\sqrt{2}$=$\frac{\sqrt{2}}{12}$.
故选:C.

点评 本题考查三棱锥体积的计算,考查分类讨论的数学思想,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.为了了解两种手机电池的待机时间,研究人员分别对甲、乙两种电池做了7次测试,测试结果统计如下表所示:
测试次数1234567
甲电池待机时间(h)120125122124124123123
乙电池待机时间(h)118123127120124120122
(Ⅰ)试计算7次测试中,甲、乙两种电池的待机时间的平均值和方差,并判断哪种电池的性能比较好,简单说明理由.
(Ⅱ)为了深入研究乙电池的性能,研究人员从乙电池待机时间测试的7组数据中随机抽取2组分析,求2组数据均大于121的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,正方形ADMN与矩形ABCD所在平面互相垂直,AB=2AD=6.
(Ⅰ)若点E是AB的中点,求证:BM∥平面NDE;
(Ⅱ)在线段AB上找一点E,使二面角D-CE-M的大小为$\frac{π}{6}$时,求出AE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知两个半径不相等的圆O1与圆O2相加交于M、N,且圆O1、圆O2分别与圆O内切与S,求证:OM⊥MN的充分必要条件是S、N、T三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的前n项和为Sn,Sn=2-($\frac{2}{n}$+1)•an,n∈N*
(1)求数列{an}的通项公式;
(2)设数列{2n•an}的前n项和为Tn,An=$\frac{1}{{T}_{1}}$+$\frac{1}{{T}_{2}}$+$\frac{1}{{T}_{3}}$+…+$\frac{1}{{T}_{n}}$,比较An与$\frac{2}{n•{a}_{n}}$大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=lnx+ax2+3x的图象过点(1,1).
(Ⅰ)求a的值及f(x)的极值;
(Ⅱ)证明:存在m∈(1,+∞),使得$f(m)=f(\frac{1}{2})$;
(Ⅲ)记y=f(x)的图象为曲线Γ.设点A(x1,y1),B(x2,y2)是曲线Γ上不同的两点.如果在曲线Γ上存在点M(x0,y0),使得:①${x_0}=\frac{{{x_1}+{x_2}}}{2}$;②曲线Γ在点M处切线平行于直线AB,则称函数f(x)存在“中值伴随切线”,试问:函数f(x)是否存在“中值伴随切线”?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,已知椭圆M:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),其离心率为$\frac{\sqrt{3}}{2}$,两条准线之间的距离为$\frac{8\sqrt{3}}{3}$.B,C分别为椭圆M的上、下顶点,过点T(t,2)(t≠0)的直线TB,TC分别与椭圆M交于E,F两点.
(1)求椭圆M的标准方程;
(2)若△TBC的面积是△TEF的面积的k倍,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.若数列{an}满足an=$\frac{1}{n!}$,求证:其前n项和Sn<e-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在棱长为1的正方体ABCD-A1B1C1D1中,M是A1D1的中点,点P在侧面BCC1B1上运动.现有下列命题:
①若点P总保持PA⊥BD1,则动点P的轨迹所在曲线是直线;
②若点P到点A的距离为$\frac{2\sqrt{3}}{3}$,则动点P的轨迹所在曲线是圆;
③若P满足∠MAP=∠MAC1,则动点P的轨迹所在曲线是椭圆;
④若P到直线BC与直线C1D1的距离比为1:2,则动点P的轨迹所在曲线是双曲线;
⑤若P到直线AD与直线CC1的距离相等,则动点P的轨迹所在曲线是抛物丝.
其中真命题是①②④(写出所有真命题的序号)

查看答案和解析>>

同步练习册答案