精英家教网 > 高中数学 > 题目详情
1.如图,正方形ADMN与矩形ABCD所在平面互相垂直,AB=2AD=6.
(Ⅰ)若点E是AB的中点,求证:BM∥平面NDE;
(Ⅱ)在线段AB上找一点E,使二面角D-CE-M的大小为$\frac{π}{6}$时,求出AE的长.

分析 (I)如图所示,连接AM交ND于点F,连接EF.利用正方形的性质可得AF=FM,利用三角形的中位线定理可得:EF∥BM.利用线面平行的判定定理可得:BM∥平面NDE.
(II)由DM⊥AD,利用面面垂直的性质定理可得:DM⊥平面ABCD,DM⊥DC.以DA,DC,DM所在直线分别作为x轴,y轴,z轴建立空间直角坐标系.设E(3,b,0),设平面MCE的法向量为$\overrightarrow{n}$=(x,y,z),则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{CE}=3x+(b-6)y=0}\\{\overrightarrow{n}•\overrightarrow{CM}=-6y+3z=0}\end{array}\right.$,解得$\overrightarrow{n}$.取平面ABCD的法向量$\overrightarrow{m}$=(0,0,1).根据二面角D-CE-M的大小为$\frac{π}{6}$时,可得$cos\frac{π}{6}$=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}||\overrightarrow{n}|}$,解出b即可.

解答 (I)证明:如图所示,连接AM交ND于点F,连接EF.
∵四边形ADMN是正方形,∴AF=FM,
又AE=EB,∴EF∥BM.
∵BM?平面NDE,EF?平面NDE,
∴BM∥平面NDE.
(II)解:由DM⊥AD,平面ADMN⊥平面ABCD,平面ADMN∩平面ABCD=AD,
∴DM⊥平面ABCD,∴DM⊥DC,又AD⊥DC.
以DA,DC,DM所在直线分别作为x轴,y轴,z轴建立空间直角坐标系.
设E(3,b,0),D(0,0,0),C(0,6,0),M(0,0,3).
$\overrightarrow{CE}$=(3,b-6,0),$\overrightarrow{CM}$=(0,-6,3).
设平面MCE的法向量为$\overrightarrow{n}$=(x,y,z),则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{CE}=3x+(b-6)y=0}\\{\overrightarrow{n}•\overrightarrow{CM}=-6y+3z=0}\end{array}\right.$,
取y=1,则z=2,x=$\frac{6-b}{3}$.
∴$\overrightarrow{n}$=$(\frac{6-b}{3},1,2)$.
取平面ABCD的法向量$\overrightarrow{m}$=(0,0,1).
∵二面角D-CE-M的大小为$\frac{π}{6}$时,∴$cos\frac{π}{6}$=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{2}{\sqrt{(\frac{6-b}{3})^{2}+1+4}×1}$,
解得b=$6-\sqrt{3}$(0≤b≤6).
∴二面角D-CE-M的大小为$\frac{π}{6}$时,AE=$6-\sqrt{3}$.

点评 本题考查了正方形的性质、三角形的中位线定理、线面平行的判定定理、面面垂直的性质定理、二面角的计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.根据十八大的精神,全国在逐步推进教育教学制度改革,各高校自主招生在高考录取中所占的比例正在逐渐加大.对此,某高校在今年的自主招生考试中制定了如下的规则:笔试阶段,考生从6道备选试题中一次性抽取3道题,并独立完成所抽取的3道题,至少正确完成其中2道试题则可以进入面试.已知考生甲正确完成每道题的概率为$\frac{2}{3}$,且每道题正确完成与否互不影响;考生乙能正确完成6道试题中的4道题,另外2道题不能完成.(Ⅰ)求考生甲至少正确完成2道题的概率;
(Ⅱ)求考生乙能通过笔试进入面试的概率;
(Ⅲ)记所抽取的三道题中考生乙能正确完成的题数为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.一个盒中有9个正品和3个次品,每次取一个零件,如果取出是次品就不再放回,求在以取得正品前,已知得次品数概率x的分布列,并求P($\frac{1}{2}$≤x≤$\frac{5}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,已知△ABC的两条内角平分线AD,BE交于点F,且∠C=60°.求证:C,D,E,F四点共圆.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在四棱锥P-ABCD中,AB$\stackrel{∥}{=}$CD,AC、BD交于点O,AB⊥平面PAC,且2PA=2PC=2CD=AD,PE=ED.
(1)求证:平面PAC⊥平面ABCD;
(2)求锐二面角E-BC-P的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某市为了宣传环保知识,举办了一次“环保知识知多少”的问卷调查活动(一人答一份).现从回收的年龄在20~60岁的问卷中随机抽取了100份,统计结果如图表所示.
年龄
分组
抽取份数答对全卷
的人数
答对全卷的人数
占本组的概率
[20,30)40280.7
[30,40)n270.9
[40,50)104b
[50,60]20a0.1
(1)分别求出n,a,b,c的值;
(2)从年龄在[40,60]答对全卷的人中随机抽取2人授予“环保之星”,求年龄在[50,60]的人中至少有1人被授予“环保之星”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△AOB中,已知∠AOB=$\frac{π}{2}$,∠BAO=$\frac{π}{6}$,AB=4,D为线段AB的中点,△AOC是由△AOB绕直线AO旋转而成,记二面角B-AO-C的大小为θ.
(1)当平面COD⊥平面AOB时,求θ的值;
(2)当θ=$\frac{2}{3}$π时,求二面角B-OD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知四面体A-BCD满足下列条件:
(1)有一个面是边长为1的等边三角形;
(2)有两个面是等腰直角三角形.
那么四面体A-BCD的体积的取值集合是(  )
A.$\{\frac{1}{2},\frac{{\sqrt{2}}}{12}\}$B.$\{\frac{1}{6},\frac{{\sqrt{3}}}{12}\}$C.$\{\frac{{\sqrt{2}}}{12},\frac{{\sqrt{3}}}{12},\frac{{\sqrt{2}}}{24}\}$D.$\{\frac{1}{6},\frac{{\sqrt{2}}}{12},\frac{{\sqrt{2}}}{24}\}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.将编号为1,2,3,4的四个小球随机放入编号为1,2,3,4的四个盒子中,每个盒子放一个.
(1)求有偶数号球放入奇数号盒子的概率;
(2)记f(i)为放入i号盒子内的小球编号与盒子编号之差的绝对值(i=1,2,3,4),求f(1)+f(2)+f(3)+f(4)≤4的概率.

查看答案和解析>>

同步练习册答案