精英家教网 > 高中数学 > 题目详情
16.如图,在四棱锥P-ABCD中,AB$\stackrel{∥}{=}$CD,AC、BD交于点O,AB⊥平面PAC,且2PA=2PC=2CD=AD,PE=ED.
(1)求证:平面PAC⊥平面ABCD;
(2)求锐二面角E-BC-P的余弦值.

分析 (1)通过AB∥CD且AB=CD可得AO=OC,结合PA=PC可得PO⊥AC,利用AB⊥平面PAC及线面垂直、面面垂直的判定定理即得结论;
(2)以A为原点建立空间直角坐标系A-xyz,则所求值即为平面EBC的法向量与平面BCP的法向量的夹角的余弦值的绝对值,计算即可.

解答 (1)证明:∵AB∥CD且AB=CD,
∴四边形ABCD为平行四边形,∴AO=OC,
又∵PA=PC,∴PO⊥AC,
∵AB⊥平面PAC,∴AB⊥PO,
∴PO⊥平面ABCD,
∴平面PAC⊥平面ABCD;
(2)解:以A为原点建立空间直角坐标系A-xyz如图,
设PA=a,则PC=CD=a,AD=2a,
则AC=$\sqrt{A{D}^{2}-C{D}^{2}}$=$\sqrt{4{a}^{2}-{a}^{2}}$=$\sqrt{3}$a,
AO=$\frac{1}{2}$AC=$\frac{\sqrt{3}}{2}$a,PO=$\sqrt{P{A}^{2}-A{O}^{2}}$=$\sqrt{{a}^{2}-\frac{3}{4}{a}^{2}}$=$\frac{1}{2}$a,
∴A(0,0,0),B(a,0,0),C(0,$\sqrt{3}$a,0),
D(-a,$\sqrt{3}$a,0),P(0,$\frac{\sqrt{3}}{2}$a,$\frac{1}{2}$a),E(-$\frac{1}{2}$a,$\frac{3\sqrt{3}}{4}$a,$\frac{1}{4}$a),
∴$\overrightarrow{BC}$=(-a,$\sqrt{3}$a,0),$\overrightarrow{BE}$=(-$\frac{3}{2}$a,$\frac{3\sqrt{3}}{4}$a,$\frac{1}{4}$a),$\overrightarrow{BP}$=(-a,$\frac{\sqrt{3}}{2}$a,$\frac{1}{2}$a),
设平面EBC的法向量为$\overrightarrow{m}$=(x,y,z),
由$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{BC}=0}\\{\overrightarrow{m}•\overrightarrow{BE}=0}\end{array}\right.$,得$\left\{\begin{array}{l}{-ax+\sqrt{3}ay=0}\\{-\frac{3}{2}ax+\frac{3\sqrt{3}}{4}ay+\frac{1}{4}az=0}\end{array}\right.$,
取y=1,得$\overrightarrow{m}$=($\sqrt{3}$,1,3$\sqrt{3}$),
设平面BCP的法向量为$\overrightarrow{n}$=(x,y,z),
由$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{BC}=0}\\{\overrightarrow{n}•\overrightarrow{BP}=0}\end{array}\right.$,得$\left\{\begin{array}{l}{-ax+\sqrt{3}ay=0}\\{-ax+\frac{\sqrt{3}}{2}ay+\frac{1}{2}az=0}\end{array}\right.$,
取y=1,得$\overrightarrow{n}$=($\sqrt{3}$,1,$\sqrt{3}$),
∴$cos<\overrightarrow{m},\overrightarrow{n}>$=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{3+1+9}{\sqrt{3+1+27}•\sqrt{3+1+3}}$=$\frac{13\sqrt{217}}{217}$,
∴所求锐二面角E-BC-P的余弦值为$\frac{13\sqrt{217}}{217}$.

点评 本题考查线面垂直的判定,面面垂直的判定,二面角,数量积运算,勾股定理,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.将一个半径适当的小球放入如图所示的容器自上方的入口处,小球自由下落,小气在下落的过程中,将遇到黑色障碍物3次,最后落入A袋或B袋中,已知小球每次遇到障碍物时,向左、右两边下落的概率分别是$\frac{1}{3}$,$\frac{2}{3}$
(Ⅰ)分别求出小球落入A袋和B袋中的概率;
(Ⅱ)在容器 入口处依次放入4个小球,记ξ为落入B袋中的小球个数,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在△ABC中,CD是∠ACB的平分线,△ACD的外接圆交BC于点E,AB=2AC.
(Ⅰ)求证:BE=2AD;
(Ⅱ)当AC=1,EC=2时,求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1,(a>b>0)的离心率为$\frac{{\sqrt{6}}}{3}$,且过点(1,$\frac{{\sqrt{6}}}{3}$).
(1)求椭圆C的方程;
(2)设与圆O:x2+y2=$\frac{3}{4}$相切的直线L交椭圆于A,B两点,M为圆O上的动点,求△ABM面积的最大值,及取得最大值时的直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知两动圆${F_1}:{(x+\sqrt{3})^2}+{y^2}={r^2}$和${F_2}:{(x-\sqrt{3})^2}+{y^2}={(4-r)^2}$(0<r<4),把它们的公共点的轨迹记为曲线C,若曲线C与y轴的正半轴的交点为M,且曲线C上的相异两点A、B满足:$\overrightarrow{MA}•\overrightarrow{MB}$=0.
(1)求曲线C的方程;
(2)若A的坐标为(-2,0),求直线AB和y轴的交点N的坐标;
(3)证明直线AB恒经过一定点,并求此定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,正方形ADMN与矩形ABCD所在平面互相垂直,AB=2AD=6.
(Ⅰ)若点E是AB的中点,求证:BM∥平面NDE;
(Ⅱ)在线段AB上找一点E,使二面角D-CE-M的大小为$\frac{π}{6}$时,求出AE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某同学在一次综合性测试中语文、数学、英语、科学、社会5门学科的名次在其所在班级里都不超过3(记第一名为1,第二名为2,第三名为3,依此类推且没有并列名次情况),则称该同学为超级学霸,现根据不同班级的甲、乙、丙、丁四位同学对一次综合性测试名次数据的描述,一定可以推断是超级学霸的是(  )
A.甲同学:平均数为2,中位数为2B.乙同学:中位数为2,唯一的众数为2
C.丙同学:平均数为2,标准差为2D.丁同学:平均数为2,唯一的众数为2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的前n项和为Sn,Sn=2-($\frac{2}{n}$+1)•an,n∈N*
(1)求数列{an}的通项公式;
(2)设数列{2n•an}的前n项和为Tn,An=$\frac{1}{{T}_{1}}$+$\frac{1}{{T}_{2}}$+$\frac{1}{{T}_{3}}$+…+$\frac{1}{{T}_{n}}$,比较An与$\frac{2}{n•{a}_{n}}$大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求下列各式的值.
(1)cos$\frac{π}{5}$cos$\frac{2π}{5}$;
(2)$\frac{1}{2}-co{s}^{2}\frac{π}{8}$;
(3)$\frac{2tan150°}{1-ta{n}^{2}150°}$.

查看答案和解析>>

同步练习册答案