分析 (Ⅰ)利用圆的内接四边形得到三角形相似,进一步得到线段成比例,最后求出结果.
(Ⅱ)利用上步的结论和割线定理求出结果.
解答 证明:(Ⅰ)连接DE,
由于四边形DECA是圆的内接四边形,
所以:∠BDE=∠BCA
∠B是公共角,
则:△BDE∽△BCA.
则:$\frac{BE}{AB}=\frac{DE}{AC}$,
又:AB=2AC
所以:BE=2DE,
CD是∠ACB的平分线,
所以:AD=DE,
则:BE=2AD.
(Ⅱ)由于AC=1,
所以:AB=2AC=2.
利用割线定理得:BD•AB=BE•BC,
由于:BE=2AD,设AD=t,
则:2(2-t)=(2+2t)•2t
解得:t=$\frac{1}{2}$,
即AD的长为$\frac{1}{2}$.
点评 本题考查的知识要点:三角形相似的判定的应用,圆周角的性质的应用,割线定理得应用,主要考查学生的应用能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{12}$ | B. | $\frac{7}{12}$ | C. | $\frac{7}{18}$ | D. | $\frac{7}{9}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com