精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=cos$\frac{πx}{6}$,集合M={1,2,3,4,5,6,7,8,9},现从M中任取两个不同的元素m,n,则f(m)•f(n)=0的概率为(  )
A.$\frac{5}{12}$B.$\frac{7}{12}$C.$\frac{7}{18}$D.$\frac{7}{9}$

分析 对于m值,求出函数的值,然后用排列组合求出满足f(m)•f(n)=0的个数,以及所有的个数,即可得到f(m)•f(n)=0的概率

解答 解:已知函数f(x)=cos$\frac{πx}{6}$,集合M={1,2,3,4,5,6,7,8,9},
现从A中任取两个不同的元素m,n,则f(m)•f(n)=0
m=3,9时,f(m)=cos$\frac{πm}{6}$=0,满足f(m)•f(n)=0的个数为m=3时8个
m=9时8个,n=3时8个,n=9时8个,重复2个,共有30个.
从A中任取两个不同的元素m,n,则f(m)•f(n)的值有72个,
所以函数f(x)从集合M中任取两个不同的元素m,n,则f(m)•f(n)=0的概率为$\frac{30}{72}$=$\frac{5}{12}$

点评 本题考查概率的应用,排列组合的应用,注意满足题意,不重复不要漏,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.如图,正方体ABCD-A1B1C1D1的棱长为2,P为棱CD上的一点,且三棱锥A-CPD1的体积为$\frac{2}{3}$.
(1)求CP的长;
(2)求直线AD与平面APD1所成的角θ的正弦值;
(3)请直接写出正方体的棱上满足C1M∥平面APD1的所有点M的位置,并任选其中的一点予以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆W:$\frac{{x}^{2}}{2m+10}$+$\frac{{y}^{2}}{{m}^{2}-2}$=1的左焦点为F(m,0),过点M(-3,0)作一条斜率大于0的直线l与W交于不同的两点A、B,延长BF交W于点C.
(1)求椭圆W的离心率;
(2)若△AMF与△CMF的面积分别为S1和S2,且S1=λS2,求λ的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在一个盒子中装有标号为1、3、5、7、9的五个球,现从中一次性取出两个球,每个小球被取出的可能性相等.
(Ⅰ)写出从中一次性取出两个小球全部可能的所有结果;
(Ⅱ求取出两个球上标号之和能被4整除的概率;
(Ⅲ)将取出两个球按较小标号为横坐标,较大标号为纵坐标,确定点,求这些点落在直线y=x+2上的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上有一点P,椭圆内一点Q在PF2的延长线上,满足QF1⊥QP,若sin∠F1PQ=$\frac{5}{13}$,则该椭圆离心率取值范围是(  )
A.($\frac{1}{5}$,1)B.($\frac{\sqrt{26}}{26}$,1)C.($\frac{1}{5},\frac{\sqrt{2}}{2}$)D.($\frac{\sqrt{26}}{26},\frac{\sqrt{2}}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在△ABC中,CD是∠ACB的平分线,△ACD的外接圆交BC于点E,AB=2AC.
(Ⅰ)求证:BE=2AD;
(Ⅱ)当AC=1,EC=2时,求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.定义:最高次项的系数为1的多项式P(x)=xn+an-1xn-1+…+a1x+a0(n∈N*)的其余系数ai(i=0,1,…,n-1)均是整数,则方程P(x)=0的根叫代数整数.下列各数不是代数整数的是(  )
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{3}$C.$\frac{1+\sqrt{5}}{2}$D.-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知两动圆${F_1}:{(x+\sqrt{3})^2}+{y^2}={r^2}$和${F_2}:{(x-\sqrt{3})^2}+{y^2}={(4-r)^2}$(0<r<4),把它们的公共点的轨迹记为曲线C,若曲线C与y轴的正半轴的交点为M,且曲线C上的相异两点A、B满足:$\overrightarrow{MA}•\overrightarrow{MB}$=0.
(1)求曲线C的方程;
(2)若A的坐标为(-2,0),求直线AB和y轴的交点N的坐标;
(3)证明直线AB恒经过一定点,并求此定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设等比数列{an}中,前n项和为Sn,已知S3=8,S6=7,则a7+a8+a9=(  )
A.8B.6C.$\frac{1}{6}$D.$\frac{1}{8}$

查看答案和解析>>

同步练习册答案