分析 根据不等式和方程之间的关系建立方程即可.
解答 解:∵不等式$\frac{x-a}{{x}^{2}+x+1}$>$\frac{x-b}{{x}^{2}-x+1}$的解集为($\frac{1}{2}$,1),
∴x=$\frac{1}{2}$,1是方程$\frac{x-a}{{x}^{2}+x+1}$=$\frac{x-b}{{x}^{2}-x+1}$的两个根,
则$\left\{\begin{array}{l}{\frac{1-a}{1+1+1}=\frac{1-b}{1-1+1}}\\{\frac{\frac{1}{2}-a}{\frac{1}{4}+\frac{1}{2}+1}=\frac{\frac{1}{2}-b}{\frac{1}{4}-\frac{1}{2}+1}}\end{array}\right.$,
即$\left\{\begin{array}{l}{\frac{1-a}{3}=1-b}\\{\frac{1-2a}{7}=\frac{1-2b}{3}}\end{array}\right.$,解得a=4,b=2,
则ab=2×4=8,
故答案为:8.
点评 本题主要考查不等式的应用,根据不等式的解和方程根之间的关系是解决本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{-a{\;}^{2}-c{\;}^{2}}{c{\;}^{2}}$ | B. | $\frac{c(λ-1)}{a}$ | C. | -1 | D. | -2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com