精英家教网 > 高中数学 > 题目详情
如图,在棱长为1的正方体ABCD-A1B1C1D1中.
(1)求证:B1C∥平面AA1D1D;
(2)求三棱锥B-ACB1体积.
考点:棱柱、棱锥、棱台的体积,直线与平面平行的判定
专题:空间位置关系与距离
分析:(1)根据正方体得出B1C∥A1D,再运用判定定理可证明.(2)利用三棱锥B-ACB1体积=三棱锥B1-ACB体积.求解就容易的多.
解答: (1)证明:∵在棱长为1的正方体ABCD-A1B1C1D1中.
∴B1C∥A1D,
∵B1C?平面AA1D1D;A1D?平面AA1D1D,
∴B1C∥平面AA1D1D;
(2)∵三棱锥B-ACB1体积=三棱锥B1-ACB体积.
∴V=
1
3
×
1
2
×1×1
×1=
1
6

∴三棱锥B-ACB1体积为
1
6
点评:本题考查了空间几何体的体积的计算,运用转换顶点的方法,以及空间直线与平面的平行的判定,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

点A(1,-2),B(2,-3),C(3,10)是否在方程x2-xy+2y+1=0表示的曲线上?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两条不同的直线m,n,两个不同的平面α,β,在下列条件中可以得出α⊥β的是(  )
A、m⊥n,n∥α,n∥β
B、m⊥n,α∩β=n,m?α
C、m∥n,n⊥β,m?α
D、m∥n,m⊥α,n⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:

点A(sin215°,cos215°)在直角坐标平面上位于第
 
象限.

查看答案和解析>>

科目:高中数学 来源: 题型:

tan(-
17π
6
)=(  )
A、
3
B、-
3
C、-
3
3
D、
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知cosα=-
3
5
,且α∈(π,
2
),则cos
α
2
的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中,正确的是
 

(1)曲线y=lnx在点(1,0)处的切线方程是y=x-1;
(2)函数y=
16-2x
的值域是[0,4];
(3)已知
a
=(sinθ,
1+cosθ
),
b
=(1,
1-cosθ
)
,其中θ∈(π,
2
)
,则
a
b

(4)O是△ABC所在平面上一定点,动点P满足:
OP
=
OA
+λ(
AB
sinC
+
AC
sinC
)
,λ∈(0,+∞),则直线1过三角形的内心.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}(n∈N*),其前n项和为Sn,给出下列四个命题:
①若{an}是等差数列,则三点(10,
S10
10
)
(100,
S100
100
)
(110,
S110
110
)
共线;
②若{an}是等差数列,且a1=-11,a3+a7=-6,则S1、S2、…、Sn这n个数中必然存在一个最大者;
③若{an}是等比数列,则Sm、S2m-Sm、S3m-S2m(m∈N*)也是等比数列;
④若Sn+1=a1+qSn(其中常数a1q≠0),则{an}是等比数列;
⑤若等比数列{an}的公比是q(q是常数),且a1=1,则数列{an2}的前n项和sn=
1-q2n
1-q2

其中正确命题的序号是
 
.(将你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)对一切实数x,y∈R都有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,又f(3)=-2.
(1)试判定该函数的奇偶性;
(2)试判断该函数在R上的单调性;
(3)求f(x)在[-12,12]上的最大值和最小值.

查看答案和解析>>

同步练习册答案