| A. | 4740 | B. | 4725 | C. | 12095 | D. | 12002 |
分析 通过计算出前几项的值可知数列{an}从第四项起构成周期为3的周期数列,进而计算可得结论.
解答 解:依题意${a_{n+1}}=\left\{\begin{array}{l}\frac{a_n}{2},{a_n}是偶数\\ 3{a_n}+1,{a_n}是奇数\end{array}\right.$,且a1=5,
a2=3×5+1=16,
a3=$\frac{16}{2}$=8,
a4=$\frac{8}{2}$=4,
a5=$\frac{4}{2}$=2,
a6=$\frac{2}{2}$=1,
a7=3×1+1=4,
∴数列{an}从第四项起构成周期为3的周期数列,
∵2015=3+3×670+2,
∴S2015=5+16+8+(4+2+1)×670+4+2=4725,
故选:B.
点评 本题考查数列的通项及前n项和,考查运算求解能力,找出周期是解决本题的关键,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | -4 | B. | 4 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=x3+sinx | B. | f(x)=ln$\frac{1-x}{1+x}$ | C. | f(x)=$\frac{{{e^x}+{e^{-x}}}}{2}$ | D. | f(x)=tan3x |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [$\frac{5π}{12}$,$\frac{11π}{12}$],k∈Z | B. | [$\frac{5π}{12}$+kπ,$\frac{11π}{12}$+kπ],k∈Z | ||
| C. | [$-\frac{π}{12}$+2kπ,$\frac{5π}{12}$+2kπ],k∈Z | D. | [-$\frac{π}{12}$+kπ,$\frac{5π}{12}$+kπ],k∈Z |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com