精英家教网 > 高中数学 > 题目详情
13.平行四边形ABCD中,$\overrightarrow{AB}$=(1,0),$\overrightarrow{AD}$=(1,2),则$\overrightarrow{AC}$•$\overrightarrow{BD}$等于(  )
A.-4B.4C.2D.-2

分析 利用向量的运算法则和数量积的运算即可得出.

解答 解:由向量的加减可得:$\overrightarrow{AB}$=(1,0),$\overrightarrow{AD}$=(1,2);
$\overrightarrow{BD}$=$\overrightarrow{AD}$-$\overrightarrow{AB}$=(0,2).$\overrightarrow{AC}$=$\overrightarrow{AB}$+$\overrightarrow{AD}$=(2,2),
则$\overrightarrow{AC}$•$\overrightarrow{BD}$=(2,2)•(0,2)=0+4=4.
故选:B.

点评 熟练掌握向量的运算法则和数量积的运算是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=asin(πx+α)+bcos(πx+β),且f(2002)=3,则f(2003)的值是(  )
A.-1B.-2C.-3D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知f(x),g(x)分别是定义在R上的奇函数和偶函数,且f(x)+g(x)=($\frac{1}{2}$)x.若存在x0∈[$\frac{1}{2}$,1],使得等式af(x0)+g(2x0)=0成立,则实数a的取值范围是[2$\sqrt{2}$,$\frac{5}{2}$$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=x2+2x-3(x<-3)的反函数f-1(x)=(  )
A.$-\sqrt{x+4}-1(x>0)$B.$\sqrt{x+4}-1(x>0)$C.$-\sqrt{x+4}-1(x<-3)$D.$\sqrt{x+4}-1(x<-3)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=2014asinx+2015bx3+2016,记f(x)的导函数为f′(x),则f(2015)+f(-2015)+f′(2016)-f′(-2016)=(  )
A.4030B.4028C.4032D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,已知直四棱柱ABCD-A1B1C1D1的底面是菱形,且∠DAB=60°,AD=AA1,F为棱BB1的中点,M为线段AC1的中点.
(1)求证:直线MF∥平面ABCD
(2)求证:MF⊥平面ACC1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知直线x=t与函数f(x)=lnx和g(x)=a+ax-x2的图象分别交于M、N两点,O为坐标原点,当直线OM、ON的斜率之差kOM-kON在区间t∈[1,+∞)上单调递增时,实数a的取值范围为(  )
A.[-2,+∞)B.(-∞,-2]C.(-2,+∞)D.(-2,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列命题正确的是(  )
A.垂直于同一条直线的两直线平行
B.垂直于同一条直线的两直线垂直
C.垂直于同一个平面的两直线平行
D.垂直于同一条直线的一条直线和平面平行

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知数列{an}的各项均为正整数,其前n项和为Sn,若${a_{n+1}}=\left\{\begin{array}{l}\frac{a_n}{2},{a_n}是偶数\\ 3{a_n}+1,{a_n}是奇数\end{array}\right.$,且a1=5,则S2015=(  )
A.4740B.4725C.12095D.12002

查看答案和解析>>

同步练习册答案