分析 (1)利用向量共线定理可得k.
(2)an=$\frac{2kn}{5•{3}^{n}}$=$\frac{n}{{3}^{n}}$,利用“错位相减法”与等比数列的求和公式即可得出.
解答 解:(1)∵$\overrightarrow{a}$∥$\overrightarrow{b}$,∴-2k-(-5)×1=0,解得k=$\frac{5}{2}$.
(2)an=$\frac{2kn}{5•{3}^{n}}$=$\frac{n}{{3}^{n}}$,
∴Sn=a1+a2+a3+…+an=$\frac{1}{3}+\frac{2}{{3}^{2}}$+$\frac{3}{{3}^{3}}$…+$\frac{n}{{3}^{n}}$,
$\frac{1}{3}{S}_{n}$=$\frac{1}{{3}^{2}}$+$\frac{2}{{3}^{3}}$+…+$\frac{n-1}{{3}^{n}}$+$\frac{n}{{3}^{n+1}}$,
∴$\frac{2}{3}$Sn=$\frac{1}{3}+\frac{1}{{3}^{2}}$+…+$\frac{1}{{3}^{n}}$-$\frac{n}{{3}^{n+1}}$=$\frac{\frac{1}{3}(1-\frac{1}{{3}^{n}})}{1-\frac{1}{3}}$-$\frac{n}{{3}^{n+1}}$=$\frac{1}{2}$-$\frac{3+2n}{2×{3}^{n+1}}$,
∴Sn=$\frac{3}{4}$-$\frac{2n+3}{4×{3}^{n}}$.
点评 本题考查了等比数列的通项公式与求和公式、“错位相减法”、向量共线定理,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $-\sqrt{x+4}-1(x>0)$ | B. | $\sqrt{x+4}-1(x>0)$ | C. | $-\sqrt{x+4}-1(x<-3)$ | D. | $\sqrt{x+4}-1(x<-3)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 垂直于同一条直线的两直线平行 | |
| B. | 垂直于同一条直线的两直线垂直 | |
| C. | 垂直于同一个平面的两直线平行 | |
| D. | 垂直于同一条直线的一条直线和平面平行 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4740 | B. | 4725 | C. | 12095 | D. | 12002 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com