精英家教网 > 高中数学 > 题目详情
11.已知△ABC的三个内角A,B,C所对的边长分别为a,b,c,G为三角形的重心,满足$\sqrt{3}$(a$\overrightarrow{GA}$+b$\overrightarrow{GB}$)+c$\overrightarrow{GC}$=$\overrightarrow{0}$,则角C=$\frac{2π}{3}$.

分析 根据重心的性质得出$\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}$,结合条件可知$\sqrt{3}a=\sqrt{3}b=c$,利用余弦定理解出cosC.

解答 解:∵G为三角形ABC的重心,∴$\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}$,
∵$\sqrt{3}$(a$\overrightarrow{GA}$+b$\overrightarrow{GB}$)+c$\overrightarrow{GC}$=$\overrightarrow{0}$,∴$\sqrt{3}a=\sqrt{3}b=c$.
∴cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{{a}^{2}+{a}^{2}-3{a}^{2}}{2{a}^{2}}$=-$\frac{1}{2}$.
∴C=$\frac{2π}{3}$.
故答案为:$\frac{2π}{3}$.

点评 本题考查了三角形重心的性质,余弦定理,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.在等差数列{an}中,公差为d,已知S10=4S5,则$\frac{{a}_{1}}{d}$=-7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.(x2+x+2y)5的展开式中,x5y2的系数为120.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求过点M(3,-4)和N(1,2)点直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,内角A,B,C的对边为a,b,c,己知2cos2$\frac{A}{2}$+(cosB-$\sqrt{3}$sinB)cosC=1
(Ⅰ)求角C的值;
(Ⅱ)若b=2,且△ABC的面积取值范围为[$\frac{\sqrt{3}}{2}$,$\sqrt{3}$],求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若实数x,y满足约束条件$\left\{\begin{array}{l}{x+y≤4}\\{y-x≤2}\\{x≥1}\\{y≥0}\end{array}\right.$,则$\frac{x+y}{x-1}$的最小值为(  )
A.2B.4C.$\frac{4}{3}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.直线(a+2)x+(1-a)y-3=0与直线(a+2)x+(2a+3)y+2=0不相交,则实数a=-2或-$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=2cos($\frac{π}{3}$x+φ)图象的一个对称中心为(2,0),且f(1)>f(3),要得到函数,f(x)的图象可将函数y=2cos$\frac{π}{3}$x的图象(  )
A.向左平移$\frac{1}{2}$个单位长度B.向左平移$\frac{π}{6}$个单位长度
C.向右平移$\frac{1}{2}$个单位长度D.向右平移$\frac{π}{6}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆M:x2+2y2=2.
(Ⅰ)求椭圆M的离心率;
(Ⅱ)设O为坐标原点,A,B,C为椭圆M上的三个动点,若四边形OABC为平行四边形,判断△ABC的面积是否为定值,并说明理由.

查看答案和解析>>

同步练习册答案