精英家教网 > 高中数学 > 题目详情
3.直线(a+2)x+(1-a)y-3=0与直线(a+2)x+(2a+3)y+2=0不相交,则实数a=-2或-$\frac{2}{3}$.

分析 根据平面内两直线不相交,则平行,由此列出方程求出a的值.

解答 解:∵直线(a+2)x+(1-a)y-3=0与直线(a+2)x+(2a+3)y+2=0不相交,
∴两直线平行,
∴(a+2)(2a+3)-(1-a)(a+2)=0,
即(a+2)(3a+2)=0,
解得a=-2或a=-$\frac{2}{3}$.
故答案为:-2或-$\frac{2}{3}$.

点评 本题考查了平面内两直线平行的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.成等差数列的三个正数的和等于6,并且这三个数分别加上3、6、13后成为等比数列{bn}中的b3、b4、b5,则数列{bn}的通项公式为(  )
A.bn=2n-1B.bn=3n-1C.bn=2n-2D.bn=3n-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.点(a+1,2a-1)在直线x-y+1=0上,则a的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知△ABC的三个内角A,B,C所对的边长分别为a,b,c,G为三角形的重心,满足$\sqrt{3}$(a$\overrightarrow{GA}$+b$\overrightarrow{GB}$)+c$\overrightarrow{GC}$=$\overrightarrow{0}$,则角C=$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知sin$\frac{α}{2}$=-$\frac{3}{5}$,cos$\frac{α}{2}$=-$\frac{4}{5}$,则角α是(  )
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.(1+x)(2+x)(3+x)…(20+x)的展开式中x19的系数是210.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若|x-3|+|x-6y|=0,则log2yx=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数y=2sin$\frac{πx}{2}$+1的部分图象如图所示,则(${\overrightarrow{OA}$+2$\overrightarrow{OB}}$)•$\overrightarrow{AB}$=(  )
A.-10B.-5C.5D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>c)的离心率为$\frac{{\sqrt{2}}}{2}$,过焦点且垂直于x轴的直线被椭圆E截得的线段长为2.
(1)求椭圆E的方程;
(2)直线y=kx+1与椭圆E交于A,B两点,以AB为直径的圆与y轴正半轴交于点C.是否存在实数k,使得y轴恰好平分∠ACB?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案