精英家教网 > 高中数学 > 题目详情
14.点(a+1,2a-1)在直线x-y+1=0上,则a的值为3.

分析 把点的坐标代人方程,解方程即可.

解答 解:∵点(a+1,2a-1)在直线x-y+1=0上,
∴(a+1)-(2a-1)+1=0,
解得a=3.
故答案为:3.

点评 本题考查了点在直线上的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.当x∈[0,2]时,函数f(x)=ax2+4(a-1)x-3在x=2时取得最大值,则实数a的取值范围是[$\frac{2}{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知数列{an}的前四项为$1,\frac{3}{4},\frac{5}{9},\frac{7}{16}$,则数列{an}的通项公式为${a_n}=\frac{2n-1}{n^2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.(x2+x+2y)5的展开式中,x5y2的系数为120.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知点A(2,-4),B(4,6),求线段AB中点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求过点M(3,-4)和N(1,2)点直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,内角A,B,C的对边为a,b,c,己知2cos2$\frac{A}{2}$+(cosB-$\sqrt{3}$sinB)cosC=1
(Ⅰ)求角C的值;
(Ⅱ)若b=2,且△ABC的面积取值范围为[$\frac{\sqrt{3}}{2}$,$\sqrt{3}$],求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.直线(a+2)x+(1-a)y-3=0与直线(a+2)x+(2a+3)y+2=0不相交,则实数a=-2或-$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设椭圆Г:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)的右焦点为F(1,0),短轴的一个端点B到F的距离等于焦距:
(1)求椭圆Г的标准方程;
(2)设C、D是四条直线x=±a,y=±b所围成的矩形在第一、第二象限的两个顶点,P是椭圆Г上任意一点,若$\overrightarrow{OP}=m\overrightarrow{OC}+n\overrightarrow{OD}$,求证:m2+n2为定值;
(3)过点F的直线l与椭圆Г交于不同的两点M、N,且满足于△BFM与△BFN的面积的比值为2,求直线l的方程.

查看答案和解析>>

同步练习册答案