分析 (Ⅰ)已知等式第一项利用诱导公式化简,第二项利用单项式乘多项式法则计算,整理后根据sinA不为0求出tanB的值,由B为三角形的内角,利用特殊角的三角函数值即可求出B的度数;
(Ⅱ)利用三角形的面积求解a的范围,然后利用余弦定理求解c的取值范围.
解答 解:(Ⅰ)2cos2$\frac{A}{2}$+(cosB-$\sqrt{3}$sinB)cosC=1
可得cosA+(cosB-$\sqrt{3}$sinB)cosC=0,
∴-cos(C+B)+cosCcosB-$\sqrt{3}$sinBcosC=0,
∴sinCsinB-$\sqrt{3}$sinBcosC=0,
∵sinB≠0,
∴sinC-$\sqrt{3}$cosC=0,
∵cosC≠0,
∴tanC=$\sqrt{3}$,
∵C∈(0,π).
解得C=$\frac{π}{3}$.
(Ⅱ)b=2,且△ABC的面积取值范围为[$\frac{\sqrt{3}}{2}$,$\sqrt{3}$],
可得$\frac{\sqrt{3}}{2}≤$$\frac{1}{2}absinC$$≤\sqrt{3}$,
可得:1≤a≤2.
由余弦定理可得:c2=a2+b2-2abcosC=a2+4-2a=(a-1)2+3∈[3,4],
则c∈[$\sqrt{3}$,2].
点评 本题主要考查余弦定理以及正弦定理的应用,三角函数的恒等变换公式的运用,同时考查三角形的面积公式及取值范围,运用正弦函数的单调性,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限角 | B. | 第二象限角 | C. | 第三象限角 | D. | 第四象限角 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0<ω≤$\frac{1}{3}$ | B. | $\frac{1}{4}$<ω≤$\frac{1}{3}$ | C. | 0<ω≤$\frac{1}{4}$ | D. | $\frac{1}{12}$<ω≤$\frac{1}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com