精英家教网 > 高中数学 > 题目详情
16.△ABC中,若|$\overrightarrow{AB}$|2+|$\overrightarrow{AC}$|2=|$\overrightarrow{AB}$+$\overrightarrow{AC}$|2,则∠A=$\frac{π}{2}$.

分析 将=|$\overrightarrow{AB}$+$\overrightarrow{AC}$|2展开即可得出$\overrightarrow{AB}•\overrightarrow{AC}=0$,于是$\overrightarrow{AB}⊥\overrightarrow{AC}$.

解答 解:∵|$\overrightarrow{AB}$|2+|$\overrightarrow{AC}$|2=|$\overrightarrow{AB}$+$\overrightarrow{AC}$|2=|$\overrightarrow{AB}$|2+|$\overrightarrow{AC}$|2+2$\overrightarrow{AB}•\overrightarrow{AC}$,
∴$\overrightarrow{AB}•\overrightarrow{AC}$=0,
∴$\overrightarrow{AB}⊥\overrightarrow{AC}$.即$∠A=\frac{π}{2}$.
故答案为:$\frac{π}{2}$.

点评 本题考查了向量垂直与数量积的关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知定义:在数列{an}中,若a${\;}_{n}^{2}$-a${\;}_{n-1}^{2}$=p(n≥2,n∈N*,p为常数),则称数列{an}为等方差数列,下列判断:
①若{an}是“等方差数列”,则数列{an2}是等差数列;
②{(-1)n}是“等方差数列”;
③若{an}是“等方差数列”,则数列{akn}(k∈N*,k为常数)不可能还是“等方差数列”;
④若{an}既是“等方差数列”,又是等差数列,则该数列是常数列.
其中正确的结论是①②④.(写出所有正确结论的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知数列{an}满足an+1=$\sqrt{{a}_{n}^{2}-2{a}_{n}+2}$+1(n∈N*),则使不等式a2016>2016成立的所有正整数a1的集合为(  )
A.{a1|a1≥2016,a1∈N*}B.{a1|a1≥2015,a1∈N*}C.{a1|a1≥2014,a1∈N*}D.{a1|a1≥2013,a1∈N*}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.当x∈[0,2]时,函数f(x)=ax2+4(a-1)x-3在x=2时取得最大值,则实数a的取值范围是[$\frac{2}{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{{b}^{2}}$=1(2>b>0)的上,下顶点分别为A,B,过点B的直线与椭圆交于另一点D,与直线y=-2交于点M.
(Ⅰ)当b=1且点D为椭圆的右顶点时,求三角形AMD的面积S的值;
(Ⅱ)若直线AM,AD的斜率之积为-$\frac{3}{4}$,求椭圆C的方程及$\overrightarrow{MA}$$•\overrightarrow{MD}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在等差数列{an}中,公差为d,已知S10=4S5,则$\frac{{a}_{1}}{d}$=-7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知非零向量$\overrightarrow{a}$,$\overrightarrow{b}$,“$\overrightarrow{a}$∥$\overrightarrow{b}$”是“$\overrightarrow{a}$∥($\overrightarrow{a}$+$\overrightarrow{b}$)”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知数列{an}的前四项为$1,\frac{3}{4},\frac{5}{9},\frac{7}{16}$,则数列{an}的通项公式为${a_n}=\frac{2n-1}{n^2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,内角A,B,C的对边为a,b,c,己知2cos2$\frac{A}{2}$+(cosB-$\sqrt{3}$sinB)cosC=1
(Ⅰ)求角C的值;
(Ⅱ)若b=2,且△ABC的面积取值范围为[$\frac{\sqrt{3}}{2}$,$\sqrt{3}$],求c的取值范围.

查看答案和解析>>

同步练习册答案