6£®ÒÑÖª¶¨Ò壺ÔÚÊýÁÐ{an}ÖУ¬Èôa${\;}_{n}^{2}$-a${\;}_{n-1}^{2}$=p£¨n¡Ý2£¬n¡ÊN*£¬pΪ³£Êý£©£¬Ôò³ÆÊýÁÐ{an}ΪµÈ·½²îÊýÁУ¬ÏÂÁÐÅжϣº
¢ÙÈô{an}ÊÇ¡°µÈ·½²îÊýÁС±£¬ÔòÊýÁÐ{an2}ÊǵȲîÊýÁУ»
¢Ú{£¨-1£©n}ÊÇ¡°µÈ·½²îÊýÁС±£»
¢ÛÈô{an}ÊÇ¡°µÈ·½²îÊýÁС±£¬ÔòÊýÁÐ{akn}£¨k¡ÊN*£¬kΪ³£Êý£©²»¿ÉÄÜ»¹ÊÇ¡°µÈ·½²îÊýÁС±£»
¢ÜÈô{an}¼ÈÊÇ¡°µÈ·½²îÊýÁС±£¬ÓÖÊǵȲîÊýÁУ¬Ôò¸ÃÊýÁÐÊdz£ÊýÁУ®
ÆäÖÐÕýÈ·µÄ½áÂÛÊǢ٢ڢܣ®£¨Ð´³öËùÓÐÕýÈ·½áÂ۵ıàºÅ£©

·ÖÎö ÀûÓᰵȷ½²îÊýÁС±Óë¡°µÈ²îÊýÁС±µÄ¶¨Òå¼°ÆäÐÔÖʼ´¿ÉÅжϳö½áÂÛ£®

½â´ð ½â£º¢Ù{an}ÊÇ¡°µÈ·½²îÊýÁС±£¬¡àa${\;}_{n}^{2}$-a${\;}_{n-1}^{2}$=p£¨n¡Ý2£¬n¡ÊN*£¬pΪ³£Êý£©£¬ÔòÊýÁÐ{an2}ÊǵȲîÊýÁУ¬ÕýÈ·£»
¢Ú¡ßan=£¨-1£©n£¬¡à${a}_{n}^{2}$=1£¬Ôòn¡Ý2ʱ£¬a${\;}_{n}^{2}$-a${\;}_{n-1}^{2}$£¬=0£¬¡àÊýÁÐ{an}ΪµÈ·½²îÊýÁУ¬ÕýÈ·£»
¢Û{an}ÊÇ¡°µÈ·½²îÊýÁС±£¬ÔòÊýÁÐ{akn}£¨k¡ÊN*£¬kΪ³£Êý£©¿ÉÄÜ»¹ÊÇ¡°µÈ·½²îÊýÁС±£¬È¡an=2Âú×ãÌõ¼þ£¬Òò´Ë²»ÕýÈ·£»
¢ÜÈô{an}¼ÈÊÇ¡°µÈ·½²îÊýÁС±£¬ÓÖÊǵȲîÊýÁУ¬É蹫²îΪd£¬¡àn¡Ý2ʱ£¬a${\;}_{n}^{2}$-a${\;}_{n-1}^{2}$=$[{a}_{1}+£¨n-1£©d]^{2}$$-[{a}_{1}+£¨n-2£©d]^{2}$=d[2a1+£¨2n-3£©d]Ϊ³£Êý£¬±ØÈ»d=0£¬
Ôò¸ÃÊýÁÐÊdz£ÊýÁУ¬ÕýÈ·£®
¹Ê´ð°¸Îª£º¢Ù¢Ú¢Ü£®

µãÆÀ ±¾Ì⿼²éÁ˵ȲîÊýÁеÄͨÏʽ¼°ÆäÐÔÖÊ¡¢Ð¶¨Òå¡¢¡°µÈ·½²îÊýÁС±£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÒÑÖª$\overrightarrow{a}$=£¨1£¬1£©£¬$\overrightarrow{b}$=£¨-2£¬-2£©£¬|$\overrightarrow{c}$|=2$\sqrt{2}$£¬$\overrightarrow{c}$•£¨$\overrightarrow{a}$+$\overrightarrow{b}$£©=2£¬Ôò$\overrightarrow{a}$ºÍ$\overrightarrow{c}$µÄ¼Ð½Ç¦È=120¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®2016Äê¸ß¿¼±¨ÃûÌå¼ìÖУ¬Ä³Êй²ÓÐ40000ÃûÄÐÉú²Î¼ÓÌå¼ì£¬Ìå¼ìÆäÖÐÒ»ÏîΪ²âÁ¿Éí¸ß£¬Í³¼Æµ÷²éÊý¾ÝÏÔʾËùÓÐÄÐÉúµÄÉí¸ß·þ´ÓÕý̬·Ö²¼N£¨170£¬16£©£®Í³¼ÆÈËÔ±´ÓÊÐÒ»ÖиßÈýµÄ²Î¼ÓÌå¼ìµÄÄÐÉúÖÐËæ»ú³éÈ¡ÁË50Ãû½øÐÐÉí¸ß²âÁ¿£¬ËùµÃÊý¾ÝÈ«²¿½éÓÚ162cmºÍ186cmÖ®¼ä£¬²¢½«²âÁ¿Êý¾Ý·Ö³É6×飺µÚÒ»×é[162£¬166£©£¬µÚ¶þ×é[166£¬170£©£¬¡­£¬µÚÁù×é[182£¬186£©£¬È»ºó°´ÉÏÊö·Ö×鷽ʽ»æÖƵõ½ÈçͼËùʾµÄƵÂÊ·Ö²¼Ö±·½Í¼£®
£¨1£©ÊÔÆÀ¹ÀÊÐÒ»ÖиßÈýÄê¼¶²Î¼ÓÌå¼ìµÄÄÐÉúÔÚÈ«ÊиßÈýÄê¼¶²Î¼ÓÌåÑéµÄÄÐÉúÖÐµÄÆ½¾ùÉí¸ß×´¿ö£¨Í¬Ò»×éÖеÄÊý¾ÝÓøÃÇø¼äµÄÖмäÖµ×÷´ú±í£©£»
£¨2£©ÔÚÕâ50Ãû²Î¼ÓÌå¼ìµÄÄÐÉúÉí¸ßÔÚ178cmÒÔÉÏ£¨º¬178cm£©µÄÈËÖÐÈÎÒâ³éÈ¡3ÈË£¬½«¸Ã3ÈËÖÐÉí¸ßÅÅÃû£¨´Ó¸ßµ½µÍ£©ÔÚÈ«ÊвμÓÌå¼ìµÄ¸ßÈýÄÐÉúÉí¸ßǰ52ÃûµÄÈËÊý¼ÇΪX£¬ÇóXµÄÊýѧÆÚÍû£®
ÈôX-N£¨¦Ì£¬¦Ä2£©£¬ÔòP£¨¦Ì-¦Ä£¼X¡Ü¦Ì+¦Ä£©=0.6826£¬P£¨¦Ì-2¦Ä£¼X¡Ü¦Ì+2¦Ä£©£©=0.9544£¬P£¨¦Ì-3¦Ä£¼X¡Ü¦Ì+3¦Ä£©=0.9974£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®³¤¶ÈÏàµÈµÄÏòÁ¿½ÐÏàµÈÏòÁ¿
B£®ÁãÏòÁ¿µÄ³¤¶ÈΪÁã
C£®¹²ÏßÏòÁ¿ÊÇÔÚÒ»ÌõÖ±ÏßÉϵÄÏòÁ¿
D£®Æ½ÐÐÏòÁ¿¾ÍÊÇÏòÁ¿ËùÔÚµÄÖ±Ï߯½ÐеÄÏòÁ¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÒÑÖªÏòÁ¿$\overrightarrow{a}$=£¨cos¦Á£¬sin¦Á£©£¬$\overrightarrow{b}$=£¨cos¦Â£¬sin¦Â£©£¬ÇÒ$\overrightarrow{a}$£¬$\overrightarrow{b}$Âú×ã¹ØÏµ|k$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{3}$|$\overrightarrow{a}$-k$\overrightarrow{b}$|£¨kΪÕýÊý£©£®
£¨1£©Çó$\overrightarrow{a}$Óë$\overrightarrow{b}$µÄÊýÁ¿»ýÓÃk±íʾµÄ½âÎöʽf£¨k£©£®
£¨2£©$\overrightarrow{a}$ÄÜ·ñÓë$\overrightarrow{b}$´¹Ö±£¿$\overrightarrow{a}$ÄÜ·ñÓë$\overrightarrow{b}$ƽÐУ¿Èô²»ÄÜ£¬ËµÃ÷ÀíÓÉ£»ÈôÄÜ£¬Çó³öÏàÓ¦µÄkÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®sin75¡ã£¨sin40¡ãcos35¡ã+cos40¡ãcos55¡ã£©=£¨¡¡¡¡£©
A£®$\frac{\sqrt{6}-\sqrt{2}}{2}$B£®$\frac{\sqrt{6}+\sqrt{2}}{2}$C£®$\frac{2+\sqrt{3}}{4}$D£®$\frac{2-\sqrt{3}}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®Èôf£¨x£©ÊǶ¨ÒåÔÚ£¨-1£¬1£©Éϵļõº¯Êý£¬ÔòÏÂÁв»µÈʽÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®f£¨sinx£©£¾f£¨cosx£©B£®f£¨$\frac{{x}^{2}+1}{2}$£©£¾f£¨x£©
C£®f£¨$\frac{1}{{3}^{x}+1}$£©¡Ýf£¨$\frac{1}{{2}^{x}+1}$£©D£®f£¨$\frac{1}{{3}^{x}+{3}^{-x}}$£©¡Ýf£¨$\frac{1}{{2}^{x}+{2}^{-x}}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÈçͼËùʾ£¬AF¡¢DE·Ö±ðÊÇ¡ÑO¡¢¡ÑO1µÄÖ±¾¶£¬ADÓëÁ½Ô²ËùÔ򵀮½Ãæ¾ù´¹Ö±£¬AD=8£¬BCÊÇ¡ÑOµÄÖ±¾¶£¬AB=AC=6£¬OE¡ÎAD£®
£¨1£©Ö¤Ã÷£ºEF¡ÎÃæBCD£»
£¨2£©Ö¤Ã÷£ºÃæACD¡ÍÃæCEF£»
£¨3£©ÇóÈýÀâ×¶O1-OBFµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®¡÷ABCÖУ¬Èô|$\overrightarrow{AB}$|2+|$\overrightarrow{AC}$|2=|$\overrightarrow{AB}$+$\overrightarrow{AC}$|2£¬Ôò¡ÏA=$\frac{¦Ð}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸