精英家教网 > 高中数学 > 题目详情
9.设椭圆Г:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)的右焦点为F(1,0),短轴的一个端点B到F的距离等于焦距:
(1)求椭圆Г的标准方程;
(2)设C、D是四条直线x=±a,y=±b所围成的矩形在第一、第二象限的两个顶点,P是椭圆Г上任意一点,若$\overrightarrow{OP}=m\overrightarrow{OC}+n\overrightarrow{OD}$,求证:m2+n2为定值;
(3)过点F的直线l与椭圆Г交于不同的两点M、N,且满足于△BFM与△BFN的面积的比值为2,求直线l的方程.

分析 (1)由椭圆的右焦点为F(1,0),短轴的一个端点B到F的距离等于焦距,列出方程组,求出a,b,由此能求出椭圆Г的标准方程.
(2)求出C(2,$\sqrt{3}$),D(-2,$\sqrt{3}$),设P(x0,y0),则$\frac{{{x}_{0}}^{2}}{4}+\frac{{{y}_{0}}^{2}}{3}=1$,由已知$\overrightarrow{OP}$=$m\overrightarrow{OC}+n\overrightarrow{OD}$,得$\frac{4(m-n)^{2}}{4}+\frac{3(m+n)^{2}}{3}$=1,由此能证明m2+n2=$\frac{1}{2}$为定值.
(3)$\frac{{S}_{△BFM}}{{S}_{△BFN}}$=2等价于$\frac{|FM|}{|FN|}$=2,设l:y=k(x-1),由$\left\{\begin{array}{l}{y=k(x-1)}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,得(3+4k2)y2+6ky-9k2=0,由此利用韦达定理、椭圆性质,结合已知条件能求出直线l的方程.

解答 解:(1)∵椭圆Г:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)的右焦点为F(1,0),短轴的一个端点B到F的距离等于焦距,
∴$\left\{\begin{array}{l}{c=1}\\{|BF|=\sqrt{{b}^{2}+{c}^{2}}=2}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$,解得a=2,b=$\sqrt{3}$,
∴椭圆Г的标准方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.
证明:(2)∵C、D是四条直线x=±a,y=±b所围成的矩形在第一、第二象限的两个顶点,
∴C(2,$\sqrt{3}$),D(-2,$\sqrt{3}$),设P(x0,y0),则$\frac{{{x}_{0}}^{2}}{4}+\frac{{{y}_{0}}^{2}}{3}=1$,
由已知$\overrightarrow{OP}$=$m\overrightarrow{OC}+n\overrightarrow{OD}$,得$\left\{\begin{array}{l}{{x}_{0}=2(m-n)}\\{{y}_{0}=\sqrt{3}(m+n)}\end{array}\right.$,
∴$\frac{4(m-n)^{2}}{4}+\frac{3(m+n)^{2}}{3}$=1,
∴m2+n2=$\frac{1}{2}$为定值.
解:(3)$\frac{{S}_{△BFM}}{{S}_{△BFN}}$=2等价于$\frac{|FM|}{|FN|}$=2,
当直线l的斜率不存在时,$\frac{|FM|}{|FN|}$=1,不合题意,
故直线l的斜率存在,设l:y=k(x-1),
由$\left\{\begin{array}{l}{y=k(x-1)}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,消去x,得(3+4k2)y2+6ky-9k2=0,
设M(x1,y1),N(x2,y2),则${y}_{1}+{y}_{2}=-\frac{6k}{3+4{k}^{2}}$,${y}_{1}{y}_{2}=-\frac{9{k}^{2}}{3+4{k}^{2}}$,
由$\frac{|FM|}{|FN|}$=2,得$\frac{{y}_{1}}{{y}_{2}}$=-2,则${y}_{2}=\frac{6k}{3+4{k}^{2}}$,${{y}_{2}}^{2}=\frac{9{k}^{2}}{2(3+4{k}^{2})}$,
∴3+4k2=8,k=$±\frac{\sqrt{5}}{2}$,
∴直线l的方程为y=$±\frac{\sqrt{5}}{2}(x-1)$.

点评 本题考查椭圆方程的求法,考查代数和为定值的证明,考查直线方程的求法,是中档题,解题时要认真审题,注意椭圆性质、向量知识、直线方程、韦达定理的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.点(a+1,2a-1)在直线x-y+1=0上,则a的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若|x-3|+|x-6y|=0,则log2yx=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数y=2sin$\frac{πx}{2}$+1的部分图象如图所示,则(${\overrightarrow{OA}$+2$\overrightarrow{OB}}$)•$\overrightarrow{AB}$=(  )
A.-10B.-5C.5D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆Г:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点与短轴两端点构成一个面积为2的等腰直角三角形,O为坐标原点;
(1)求椭圆Г的方程;
(2)设点A在椭圆Г上,点B在直线y=2上,且OA⊥OB,求证:$\frac{1}{O{A}^{2}}+\frac{1}{O{B}^{2}}$为定值;
(3)设点C在椭圆Г上运动,OC⊥OD,且点O到直线CD的距离为常数$\sqrt{3}$,求动点D的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=$\frac{a(x-1)}{x+1}$-lnx在[1,+∞)上是减函数,则实数a的取值范围为(  )
A.a<1B.a<2C.a≤2D.a≤3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知ω>0,函数f(x)=sinωx+$\sqrt{3}$cosωx在(0,$\frac{π}{2}}$)上单调递增,则ω的取值范围是(  )
A.0<ω≤$\frac{1}{3}$B.$\frac{1}{4}$<ω≤$\frac{1}{3}$C.0<ω≤$\frac{1}{4}$D.$\frac{1}{12}$<ω≤$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>c)的离心率为$\frac{{\sqrt{2}}}{2}$,过焦点且垂直于x轴的直线被椭圆E截得的线段长为2.
(1)求椭圆E的方程;
(2)直线y=kx+1与椭圆E交于A,B两点,以AB为直径的圆与y轴正半轴交于点C.是否存在实数k,使得y轴恰好平分∠ACB?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左顶点与抛物线y2=2px(p>0)的焦点的距离为3,且双曲线的一条渐近线与抛物线的准线的交点坐标为(-1,-1),则双曲线的标准方程为(  )
A.$\frac{x^2}{2}$-$\frac{y^2}{2}$=1B.$\frac{x^2}{4}$-$\frac{y^2}{4}$=1C.$\frac{x^2}{4}$-y2=1D.$\frac{x^2}{2}$-y2=1

查看答案和解析>>

同步练习册答案