分析 (Ⅰ)椭圆M化为标准方程,由此能求出椭圆M的离心率.
(Ⅱ)若B是椭圆的右顶点(左顶点一样),此时AC垂直平分OB,求出△OAC的面积为$\frac{\sqrt{6}}{4}$;若B不是椭圆的左右顶点,设AC:y=kx+m,k≠0,由$\left\{\begin{array}{l}{y=kx+m}\\{{x}^{2}+2{y}^{2}=2}\end{array}\right.$,得(2k2+1)x2+4kmx+2m2-20=0,由此利用根的判别式、韦达定理、弦长公式求出△ABC的面积,从而得到△ABC的面积为定值$\frac{\sqrt{6}}{4}$.
解答 解:(Ⅰ)∵椭圆M:x2+2y2=2,
∴椭圆M的标准方程为:$\frac{{x}^{2}}{2}+{y}^{2}=1$,
∴a=$\sqrt{2}$,b=1,c=1,
∴椭圆M的离心率e=$\frac{c}{a}=\frac{\sqrt{2}}{2}$.
(Ⅱ)①若B是椭圆的右顶点(左顶点一样),此时AC垂直平分OB,
∴A($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{3}}{2}$),C($\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{3}}{2}$),B($\sqrt{2}$,0),
|AC|=$\sqrt{3}$,|OB|=$\sqrt{2}$,
∴△OAC的面积${S}_{△OAC}=\frac{1}{2}|AC|•\frac{1}{2}|OB|$=$\frac{1}{2}×\sqrt{3}×\frac{1}{2}×\sqrt{2}=\frac{\sqrt{6}}{4}$.
②若B不是椭圆的左右顶点,设AC:y=kx+m,k≠0,A(x1,y1),B(x2,y2),
由$\left\{\begin{array}{l}{y=kx+m}\\{{x}^{2}+2{y}^{2}=2}\end{array}\right.$,得(2k2+1)x2+4kmx+2m2-20=0,
△=16k2m2-4(2k2+1)(2m2-2)>0,
${x}_{1}+{x}_{2}=-\frac{4km}{2{k}^{2}+1}$,${x}_{1}{x}_{2}=\frac{2{m}^{2}-2}{2{k}^{2}+1}$,
y1+y2=k(x1+x2)+2m=$\frac{2m}{2{k}^{2}+1}$,
∵四边形OABC为平行四边形,
∴OB=OA+OC=(x1+x2,y1+y2)=(-$\frac{4km}{2{k}^{2}+1}$,$\frac{2m}{2{k}^{2}+1}$),
∴B(-$\frac{4km}{2{k}^{2}+12}$,$\frac{2m}{{k}^{2}+1}$),
代入椭圆方程,化简,得2k2+14=m2,
∵|AC|=$\sqrt{({x}_{1}-{x}_{2})^{2}+({y}_{1}-{y}_{2})^{2}}$
=$\sqrt{1+{k}^{2}}$$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$
=$\sqrt{1+{k}^{2}}$$\sqrt{(-\frac{4km}{2{k}^{2}+1})^{2}-\frac{4(2{m}^{2}-2)}{2{k}^{2}+1}}$
=$\sqrt{1+{k}^{2}}$•$\frac{\sqrt{22}•\sqrt{2{k}^{2}+1-{m}^{2}}}{2{k}^{2}+1}$
=$\frac{\sqrt{6}•\sqrt{1+{k}^{2}}}{2|m|}$,
点O到直线AC的距离d=$\frac{|m|}{\sqrt{1+{k}^{2}}}$
∴△OAC的面积S△OAC=$\frac{1}{2}|AC|d$
=$\frac{1}{2}×\frac{\sqrt{6}\sqrt{1+{k}^{2}}}{2|m|}×\frac{|m|}{\sqrt{1+{k}^{2}}}$
=$\frac{\sqrt{6}}{4}$.
综上,△OAC的面积为定值$\frac{\sqrt{6}}{4}$,
∵△OAC的面积=△ABC的面积,
∴△ABC的面积为定值$\frac{\sqrt{6}}{4}$.
点评 本题考查椭圆的离心率的求法,考查三角形的面积是否为定值的判断与求法,是中档题,解题时要认真审题,注意根的判别式、韦达定理、弦长公式、椭圆性质的合理运用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -10 | B. | -5 | C. | 5 | D. | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a<1 | B. | a<2 | C. | a≤2 | D. | a≤3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0<ω≤$\frac{1}{3}$ | B. | $\frac{1}{4}$<ω≤$\frac{1}{3}$ | C. | 0<ω≤$\frac{1}{4}$ | D. | $\frac{1}{12}$<ω≤$\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1)与(2)的假设都错误 | B. | (1)与(2)的假设都正确 | ||
| C. | (1)的假设错误;(2)的假设正确 | D. | (1)的假设正确;(2)的假设错误 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com