精英家教网 > 高中数学 > 题目详情
16.(1)已知p3+q3=2,求证p+q≤2,用反证法证明时,可假设p+q≥2,
(2)已知a,b∈R,|a|+|b|<1,求证方程x2+ax+b=0的两根的绝对值都小于1.
用反证法证明时可假设方程至少有一根的绝对值大于或等于1.以下结论正确的是(  )
A.(1)与(2)的假设都错误B.(1)与(2)的假设都正确
C.(1)的假设错误;(2)的假设正确D.(1)的假设正确;(2)的假设错误

分析 利用反证法的定义进行分析求解.

解答 解:(1)用反证法证明时,假设命题为假,应为全面否定.
所以p+q≤2的假命题应为p+q>2.故(1)错误;
(2)已知a,b∈R,|a|+|b|<1,求证方程x2+ax+b=0的两根的绝对值都小于1,
根据反证法的定义,可假设|x1|≥1,故(2)正确;
故选:C.

点评 此题主要考查反证法的定义及其应用,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知椭圆M:x2+2y2=2.
(Ⅰ)求椭圆M的离心率;
(Ⅱ)设O为坐标原点,A,B,C为椭圆M上的三个动点,若四边形OABC为平行四边形,判断△ABC的面积是否为定值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.用反证法证明命题“设a,b是实数,则方程x3+ax+b=0至少有一个实根”时,要做的反设是(4)(填序号)
(1)方程x3+ax+b=0恰好有两个实根   (2)方程x3+ax+b=0至多有一个实根
(3)方程x3+ax+b=0至多有两个实根   (4)方程x3+ax+b=0没有实根.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某商场柜台销售某种产品,每件产品的成本为10元,并且每件产品需向该商场交a元(3≤a≤7)的管理费,预计当每件产品的售价为x元(20≤x≤25)时,一天的销售量为(x-30)2件.
(Ⅰ)求该柜台一天的利润f(x)(元)与每件产品的售价x的函数关系式;
(Ⅱ)当每件产品的售价为多少元时,该柜台一天的利润f(x)最大,并求出f(x)的最大值g(a).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1的左焦点为F1,右焦点F2,直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直l1于点P,线段PF2垂直平分线交l2于点M.
(1)求点M的轨迹E的方程;
(2)若点A的坐标为(2,4),直线l:x=ky+2(k∈R),与曲线E相交于B,C两点,直线AB,AC分别交直线l1于点S、T,试判断以线段ST为直径的圆是否恒过两个定点?若是,求这两个定点的坐标;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=cos(ωx+φ)(A>0,ω>0,0<φ<$\frac{π}{2}$)的部分图象,如图所示.
(1)求函数解析式,并求出函数的单调增区间;
(2)若方程f(x)=m在[-$\frac{π}{6}$,$\frac{13π}{12}$]有两个不同的实根,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=$\left\{\begin{array}{l}{{3}^{x}-1,x>0}\\{{x}^{2}+1,x≤0}\end{array}\right.$,若存在x1∈(0,+∞),x2∈(-∞,0],使得f(x1)=f(x2),则x1的最小值为(  )
A.log23B.log32C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,将抛物线C1:y=$\frac{1}{2}$x2+2x沿x轴对称后,向右平移3个单位,再向下平移5个单位,得到抛物线C2,若抛物线C1的顶点为A,点P是抛物线C2上一点,则△POA的面积的最小值为(  )
A.3B.3.5C.4D.4.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,动点P,Q从点A(3,0)出发绕⊙O作圆周运动,若点M按逆时针方向每秒钟转$\frac{π}{3}$rad,点N按顺时针方向每秒钟转$\frac{π}{6}$rad.则当M、N第一次相遇时,点M转过的弧长为4π.

查看答案和解析>>

同步练习册答案