精英家教网 > 高中数学 > 题目详情
4.某商场柜台销售某种产品,每件产品的成本为10元,并且每件产品需向该商场交a元(3≤a≤7)的管理费,预计当每件产品的售价为x元(20≤x≤25)时,一天的销售量为(x-30)2件.
(Ⅰ)求该柜台一天的利润f(x)(元)与每件产品的售价x的函数关系式;
(Ⅱ)当每件产品的售价为多少元时,该柜台一天的利润f(x)最大,并求出f(x)的最大值g(a).

分析 (Ⅰ)求出每件产品的利润,乘以价格得到利润L(万元)与每件产品的售价x的函数关系式;
(Ⅱ)求出利润函数的导函数,由a的范围得到导函数零点的范围,分类讨论原函数在[9,11]上的单调性,并求出a在不同范围内的利润函数的最值.

解答 解:(Ⅰ)f(x)=(x-30)2(x-10-a),20≤x≤25…(3分)
(Ⅱ)f'(x)=2(x-30)•(x-10-a)+(x-30)2=(3x-2a-50)(x-30).…(4分)
令f'(x)=0,则$x=\frac{2a+50}{3}$或x=30,…(5分)
∵$3≤a≤7∴\frac{56}{3}≤\frac{2a+50}{3}≤\frac{64}{3}$…(6分)
∴①若$\frac{2a+50}{3}≤20$,即3≤a≤5时,f'(x)≤0,x∈[20,25],
∴f(x)在[20,25]上是减函数.
∴$f{(x)_{max}}=f(20)={(30-20)^2}(20-10-a)$=100(10-a)=1000-10a…(8分)
②若5<a≤7时,$\frac{2a+50}{3}∈[20,25]$
当$x∈[20,\frac{3a+50}{3}]$时,f'(x)>0,此时f(x)在$[20,\frac{3a+50}{3}]$是增函数;
当$x∈[\frac{3a+50}{3},25]$时,f'(x)<0,此时f(x)在$[\frac{3a+50}{3},25]$是减函数.
∴$f{(x)_{max}}=f(\frac{2a+50}{3})={(30-\frac{2a+50}{3})^2}(\frac{2a+50}{3}-10-a)$=${(\frac{2a-40}{3})^2}(\frac{20-a}{3})=-\frac{{4{{(a-20)}^3}}}{27}$…(11分)
∴当3≤a≤5时,售价为20元时利润最大,最大利润g(a)为1000-10a;
当5<a≤7时,售价为$\frac{2a+50}{3}$元时利润最大,最大利润g(a)为$-\frac{{4{{(a-20)}^3}}}{27}$.…(12分)

点评 本题考查函数、导数及其应用等知识,考查运用数学知识分析和解决实际问题的能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=$\frac{a(x-1)}{x+1}$-lnx在[1,+∞)上是减函数,则实数a的取值范围为(  )
A.a<1B.a<2C.a≤2D.a≤3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知点O在平面ABC内,若$\overrightarrow{AO}$=λ($\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$)(λ∈R),则直线AO经过△ABC的内心.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知:
1+$\frac{1}{2}$=$\frac{3}{2}$
1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$>2
1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+$\frac{1}{5}$+$\frac{1}{6}$+$\frac{1}{7}$+$\frac{1}{8}$>$\frac{5}{2}$
1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+$\frac{1}{5}$+$\frac{1}{6}$+$\frac{1}{7}$+$\frac{1}{8}$+$\frac{1}{9}$+…+$\frac{1}{16}$>3

以此类推,写出一般的结论并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左顶点与抛物线y2=2px(p>0)的焦点的距离为3,且双曲线的一条渐近线与抛物线的准线的交点坐标为(-1,-1),则双曲线的标准方程为(  )
A.$\frac{x^2}{2}$-$\frac{y^2}{2}$=1B.$\frac{x^2}{4}$-$\frac{y^2}{4}$=1C.$\frac{x^2}{4}$-y2=1D.$\frac{x^2}{2}$-y2=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.P为双曲线x2-$\frac{{y}^{2}}{3}$=1的渐近线位于第一象限上的一点,若点P到该双曲线左焦点的距离为2$\sqrt{3}$,则点P到其右焦点的距离为(  )
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.(1)已知p3+q3=2,求证p+q≤2,用反证法证明时,可假设p+q≥2,
(2)已知a,b∈R,|a|+|b|<1,求证方程x2+ax+b=0的两根的绝对值都小于1.
用反证法证明时可假设方程至少有一根的绝对值大于或等于1.以下结论正确的是(  )
A.(1)与(2)的假设都错误B.(1)与(2)的假设都正确
C.(1)的假设错误;(2)的假设正确D.(1)的假设正确;(2)的假设错误

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.过双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F作直线y=$\frac{b}{a}$x的垂线,垂足为A,交C的左支于B点,若$\overrightarrow{OF}$+$\overrightarrow{OB}$=2$\overrightarrow{OA}$,则C的离心率为(  )
A.$\sqrt{3}$B.2C.$\sqrt{5}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.同时具有性质:
①最小正周期是π;
②图象关于直线x=$\frac{π}{3}$对称;
③在区间$[{\frac{5π}{6},π}]$上是单调递增函数”的一个函数可以是(  )
A.$y=cos(\frac{x}{2}+\frac{π}{6})$B.$y=sin(2x+\frac{5π}{6})$C.$y=cos(2x-\frac{π}{3})$D.$y=sin(2x-\frac{π}{6})$

查看答案和解析>>

同步练习册答案