精英家教网 > 高中数学 > 题目详情
12.已知:
1+$\frac{1}{2}$=$\frac{3}{2}$
1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$>2
1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+$\frac{1}{5}$+$\frac{1}{6}$+$\frac{1}{7}$+$\frac{1}{8}$>$\frac{5}{2}$
1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+$\frac{1}{5}$+$\frac{1}{6}$+$\frac{1}{7}$+$\frac{1}{8}$+$\frac{1}{9}$+…+$\frac{1}{16}$>3

以此类推,写出一般的结论并加以证明.

分析 由归纳猜想可知1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{2}^{n}}$≥$\frac{2+n}{2}$,从而利用数学归纳法证明.

解答 解:由归纳法可知,1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{2}^{n}}$≥$\frac{2+n}{2}$,
证明如下,
当n=1,2,3,4时,上式显然成立;
假设当n=k,(k∈N*)时成立,
即1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{2}^{k}}$≥1+$\frac{k}{2}$,
1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{2}^{k}}$+$\frac{1}{{2}^{k}+1}$+…+$\frac{1}{{2}^{k+1}}$
≥1+$\frac{k}{2}$+$\frac{1}{{2}^{k}+1}$+…+$\frac{1}{{2}^{k+1}}$
≥1+$\frac{k}{2}$+$\frac{1}{{2}^{k+1}}$+…+$\frac{1}{{2}^{k+1}}$
=1+$\frac{k}{2}$+$\frac{1}{2}$=$\frac{2+k+1}{2}$;
故n=k+1时也成立;
故1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{2}^{n}}$≥$\frac{2+n}{2}$成立.

点评 本题考查了归纳法的应用分类讨论的思想应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.设奇函数f(x)=$\left\{\begin{array}{l}{acosx-\sqrt{3}sinx+c,x≥0}\\{cosx+bsinx-c,x<0}\end{array}\right.$,则a+c的值为0,不等式f(x)>f(-x)在x∈[-π,π]上的解集为[-$\frac{2}{3}π$,$\frac{2}{3}π]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=$\frac{{\sqrt{x-2}}}{{2\sqrt{x+1}}}$的定义域是(  )
A.(-1,+∞)B.[2,+∞)C.(-∞,2]D.(-1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.将函数f(x)=cosx的图象向右平移$\frac{π}{2}$个单位后所得的图象的函数解析式为y=sinx.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.用反证法证明命题“设a,b是实数,则方程x3+ax+b=0至少有一个实根”时,要做的反设是(4)(填序号)
(1)方程x3+ax+b=0恰好有两个实根   (2)方程x3+ax+b=0至多有一个实根
(3)方程x3+ax+b=0至多有两个实根   (4)方程x3+ax+b=0没有实根.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知f(x)=x2sinx,则$f'(\frac{π}{2})$=(  )
A.$\frac{π^2}{2}$B.$-\frac{π^2}{2}$C.$-\frac{π^2}{4}$D.π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某商场柜台销售某种产品,每件产品的成本为10元,并且每件产品需向该商场交a元(3≤a≤7)的管理费,预计当每件产品的售价为x元(20≤x≤25)时,一天的销售量为(x-30)2件.
(Ⅰ)求该柜台一天的利润f(x)(元)与每件产品的售价x的函数关系式;
(Ⅱ)当每件产品的售价为多少元时,该柜台一天的利润f(x)最大,并求出f(x)的最大值g(a).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=cos(ωx+φ)(A>0,ω>0,0<φ<$\frac{π}{2}$)的部分图象,如图所示.
(1)求函数解析式,并求出函数的单调增区间;
(2)若方程f(x)=m在[-$\frac{π}{6}$,$\frac{13π}{12}$]有两个不同的实根,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知复数Z=i(1-i),则复数Z的共轭复数为1-i.

查看答案和解析>>

同步练习册答案