精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=cos(ωx+φ)(A>0,ω>0,0<φ<$\frac{π}{2}$)的部分图象,如图所示.
(1)求函数解析式,并求出函数的单调增区间;
(2)若方程f(x)=m在[-$\frac{π}{6}$,$\frac{13π}{12}$]有两个不同的实根,求m的取值范围.

分析 (1)由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.
(2)由题意可得直线y=m和函数f(x)的图象在[-$\frac{π}{6}$,$\frac{13π}{12}$]有两个不同的交点,数形结合求得m的范围.

解答 解:(1)由函数f(x)=cos(ωx+φ)(A>0,ω>0,0<φ<$\frac{π}{2}$)的部分图象,
可得$\frac{1}{2}•\frac{2π}{ω}$=$\frac{5π}{6}-\frac{π}{3}$,求得ω=2.
再根据五点法作图可得2•$\frac{π}{3}$+φ=π,∴φ=$\frac{π}{3}$,f(x)=cos(2x+$\frac{π}{3}$).
令2kπ+π≤2x+$\frac{π}{3}$≤2kπ+2π,求得kπ+$\frac{π}{3}$≤x≤kπ+$\frac{5π}{6}$,
∴函数f(x)的增区间为[kπ+$\frac{π}{3}$,kπ+$\frac{5π}{6}$],k∈Z.
(2)若方程f(x)=m在[-$\frac{π}{6}$,$\frac{13π}{12}$]有两个不同的实根,
故直线y=m和函数f(x)的图象在[-$\frac{π}{6}$,$\frac{13π}{12}$]有两个不同的交点.
数形结合可得m=1或 m∈(-1,0).

点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由周期求出ω,由五点法作图求出φ的值,方程根的存在性以及个数的判断,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.实数m取何值时,复数z=m2-1+(m2-3m+2)i
(1)是实数;
(2)是纯虚数;
(3)复数z在复平面内表示的点在第二象限.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知:
1+$\frac{1}{2}$=$\frac{3}{2}$
1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$>2
1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+$\frac{1}{5}$+$\frac{1}{6}$+$\frac{1}{7}$+$\frac{1}{8}$>$\frac{5}{2}$
1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+$\frac{1}{5}$+$\frac{1}{6}$+$\frac{1}{7}$+$\frac{1}{8}$+$\frac{1}{9}$+…+$\frac{1}{16}$>3

以此类推,写出一般的结论并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.P为双曲线x2-$\frac{{y}^{2}}{3}$=1的渐近线位于第一象限上的一点,若点P到该双曲线左焦点的距离为2$\sqrt{3}$,则点P到其右焦点的距离为(  )
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.(1)已知p3+q3=2,求证p+q≤2,用反证法证明时,可假设p+q≥2,
(2)已知a,b∈R,|a|+|b|<1,求证方程x2+ax+b=0的两根的绝对值都小于1.
用反证法证明时可假设方程至少有一根的绝对值大于或等于1.以下结论正确的是(  )
A.(1)与(2)的假设都错误B.(1)与(2)的假设都正确
C.(1)的假设错误;(2)的假设正确D.(1)的假设正确;(2)的假设错误

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.某校老年、中年和青年教师的人数分别为900、1800、1600,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有240人,则该样本的老年教师人数为135.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.过双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F作直线y=$\frac{b}{a}$x的垂线,垂足为A,交C的左支于B点,若$\overrightarrow{OF}$+$\overrightarrow{OB}$=2$\overrightarrow{OA}$,则C的离心率为(  )
A.$\sqrt{3}$B.2C.$\sqrt{5}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如果袋中装有数量差别很大而大小相同的白球和黄球(只是颜色不同)若干个,从中任取一球,取了10次有7个白球,估计袋中数量最多的是白球.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知幂函数y=f(x)的图象经过点(3,$\sqrt{3}$),那么f(4)=2.

查看答案和解析>>

同步练习册答案