精英家教网 > 高中数学 > 题目详情
7.用反证法证明命题“设a,b是实数,则方程x3+ax+b=0至少有一个实根”时,要做的反设是(4)(填序号)
(1)方程x3+ax+b=0恰好有两个实根   (2)方程x3+ax+b=0至多有一个实根
(3)方程x3+ax+b=0至多有两个实根   (4)方程x3+ax+b=0没有实根.

分析 直接利用命题的否定写出假设即可.

解答 解:反证法证明问题时,反设实际是命题的否定,
∴用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是:方程x3+ax+b=0没有实根.
故答案为:(4).

点评 本题考查反证法证明问题的步骤,基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.函数y=2sin$\frac{πx}{2}$+1的部分图象如图所示,则(${\overrightarrow{OA}$+2$\overrightarrow{OB}}$)•$\overrightarrow{AB}$=(  )
A.-10B.-5C.5D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>c)的离心率为$\frac{{\sqrt{2}}}{2}$,过焦点且垂直于x轴的直线被椭圆E截得的线段长为2.
(1)求椭圆E的方程;
(2)直线y=kx+1与椭圆E交于A,B两点,以AB为直径的圆与y轴正半轴交于点C.是否存在实数k,使得y轴恰好平分∠ACB?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知点O在平面ABC内,若$\overrightarrow{AO}$=λ($\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$)(λ∈R),则直线AO经过△ABC的内心.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.用反证法证明命题:“设实数a,b,c满足a+b+c=3,则a,b,c中至少有一个数不小于1”时,第一步应写:假设a,b,c都小于2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知:
1+$\frac{1}{2}$=$\frac{3}{2}$
1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$>2
1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+$\frac{1}{5}$+$\frac{1}{6}$+$\frac{1}{7}$+$\frac{1}{8}$>$\frac{5}{2}$
1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+$\frac{1}{5}$+$\frac{1}{6}$+$\frac{1}{7}$+$\frac{1}{8}$+$\frac{1}{9}$+…+$\frac{1}{16}$>3

以此类推,写出一般的结论并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左顶点与抛物线y2=2px(p>0)的焦点的距离为3,且双曲线的一条渐近线与抛物线的准线的交点坐标为(-1,-1),则双曲线的标准方程为(  )
A.$\frac{x^2}{2}$-$\frac{y^2}{2}$=1B.$\frac{x^2}{4}$-$\frac{y^2}{4}$=1C.$\frac{x^2}{4}$-y2=1D.$\frac{x^2}{2}$-y2=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.(1)已知p3+q3=2,求证p+q≤2,用反证法证明时,可假设p+q≥2,
(2)已知a,b∈R,|a|+|b|<1,求证方程x2+ax+b=0的两根的绝对值都小于1.
用反证法证明时可假设方程至少有一根的绝对值大于或等于1.以下结论正确的是(  )
A.(1)与(2)的假设都错误B.(1)与(2)的假设都正确
C.(1)的假设错误;(2)的假设正确D.(1)的假设正确;(2)的假设错误

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.不等式|2x-log2x|<2x+|log2x|成立,则(  )
A.1<x<2B.0<x<1C.x>1D.x>2

查看答案和解析>>

同步练习册答案