分析 不等式x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1)等价为(x1-x2)[f(x1)-f(x2)]>0,即满足条件的函数为单调递增函数,判断函数的单调性即可得到结论.
解答 解:∵对于任意给定的不等实数x1,x2,
不等式x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1)恒成立,
∴不等式等价为(x1-x2)[f(x1)-f(x2)]>0恒成立,
即函数f(x)是定义在R上的增函数.
对于①y=-x3+x+1;y′=-3x2+1,则函数在定义域上不单调;
对于②y=3x-2(sinx-cosx);y′=3-2(cosx+sinx)=3-2$\sqrt{2}$sin(x+$\frac{π}{4}$)>0,
函数单调递增,满足条件;
对于③y=ex+1为增函数,满足条件;
④f(x)=$\left\{\begin{array}{l}{ln|x|,x≠0}\\{0,x=0}\end{array}\right.$,当x>0时,函数单调递增,当x<0时,函数单调递减,不满足条件.
综上满足“H函数”的函数为②③,
故答案为:②③.
点评 本题主要考查函数单调性的应用,将条件转化为函数的单调性的形式是解决本题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 3 | C. | 5 | D. | 不能确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2015 | B. | 2014 | C. | 1007或1008 | D. | 1001或1002 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com