精英家教网 > 高中数学 > 题目详情
12.设向量$\overline a=(1,2),\overrightarrow b=(m,m+1),\overrightarrow a⊥\overrightarrow b$,则实数m的值为(  )
A.0B.-$\frac{2}{3}$C.-$\frac{9}{5}$D.-3

分析 由条件利用两个向量的数量积公式,两个向量垂直的性质,求得实数m的值.

解答 解:由向量$\overline a=(1,2),\overrightarrow b=(m,m+1),\overrightarrow a⊥\overrightarrow b$,
可得m+2(m+1)=0,求得m=-$\frac{2}{3}$,
故选:B.

点评 本题主要考查两个向量的数量积公式,两个向量垂直的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.函数y=x3(x>0)的图象在点(ak,ak3)处的切线所对应的一次函数的零点为ak+1,其中k∈N*.若a1=2,则a1+a3+a5的值是$\frac{266}{81}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.要从编号为1,2,3…,60的某种型号冰箱中随机抽取6台进行检测,用系统抽样的方法确定所选取的6台冰箱的编号可能是(  )
A.5,10,15,20,25,30B.3,13,23,33,43,53
C.1,2,3,4,5,6D.2,4,8,16,32,48

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在△ABC中,角A,B,C所对的边分别是a,b,c,若∠B=60°,b=$\sqrt{3}$,则2a+c的最大值是$2\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求经过直线l1:3x+2y-5=0,l2:3x-2y-1=0的交点且平行于直线2x+y-5=0的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图所示的图形由两个等腰直角三角形和一个正方形组成,且正方形的边长为2,直线x=t(0<t≤4)从左到右扫过图形的面积为S=f(t),则$f(\frac{1}{4})+f(\frac{3}{2})$等于(  )
A.$\frac{11}{4}$B.$\frac{9}{4}$C.$\frac{29}{16}$D.$\frac{33}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=3cos2x(x∈R)
(1)判断函数f(x)的奇偶性;
(2)求不等式$f(x)+f(x-\frac{π}{4})>\frac{{3\sqrt{2}}}{2}$的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.某商场在儿童节矩形回馈顾客活动,凡在商场消费满100元者即可参加射击赢玩具活动,具体规则如下:每人最多可射击3次,一旦击中,则可获奖且不再继续射击,否则一直射击到3次为止,设甲每次击中的概率为p(p≠0),射击参数为η,若η的数学期望E(η)>$\frac{7}{4}$,则p的取值范围是(0,0.5).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若F(x)=a•f(x)g(x)+b•[f(x)+g(x)]+c(a,b,c均为常数),则称F(x)是由函数f(x)与函数g(x)所确定的“a→b→c”型函数.设函数f1(x)=x+1与函数f2(x)=x2-3x+6,若f(x)是由函数f1-1(x)+1与函数f2(x)所确定的“1→0→5”型函数,且实数m,n满足f(m)=$\frac{1}{2}$f(n)=6,则m+n的值为2.

查看答案和解析>>

同步练习册答案