精英家教网 > 高中数学 > 题目详情
已知向量
m
=(2cosx+2
3
sinx,1),向量
n
=(cosx,-y),x,y∈R.
(1)若
m
n
,且y=1,求tan(x+
π
6
)的值;
(2)若
m
n
,设y=f(x),求函数f(x)的单调增区间.
考点:平面向量共线(平行)的坐标表示,数量积判断两个平面向量的垂直关系,三角函数中的恒等变换应用
专题:三角函数的图像与性质,平面向量及应用
分析:(1)利用向量共线的坐标表示列式求得tanx=-
3
2
.然后利用两角和的正切公式展开求值;
(2)由向量垂直的坐标表示列式得到函数y=f(x)的解析式,然后利用复合函数的单调性求函数f(x)的单调增区间.
解答: 解:(1)
m
=(2cosx+2
3
sinx,1),
n
=(cosx,-y),
m
n
,且y=1,
∴2cosx+2
3
sinx=-cosx

tanx=-
3
2

∴tan(x+
π
6
)=
tanx+tan
π
6
1-tanx•tan
π
6
=
-
3
2
+
3
3
1-(-
3
2
3
3
=-
3
9

(2)∵
m
n

m
n
=0,得2cos2x+2
3
sinxcosx-y=0

y=f(x)=1+cos2x+
3
sin2x=2sin(2x+
π
6
)+1

-
π
2
+2kπ≤2x+
π
6
π
2
+2kπ,k∈Z

kπ-
π
3
≤x≤kπ+
π
6
,k∈Z.
故f(x)的单调增区间为[kπ-
π
3
,kπ+
π
6
],k∈Z
点评:平行问题及垂直问题是一个重要的知识点,在高考题中常常出现,常与向量的模、向量的坐标表示等联系在一起,要特别注意垂直与平行的区别.若
a
=(a1,a2),
b
=(b1,b2),则
a
b
?a1a2+b1b2=0,
a
b
?a1b2-a2b1=0.是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

用1,2,3,4,组成不含重复数字的四位数,其中数字1,3相邻的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义域为(0,+∞)的单调函数f(x),对任意的x∈(0,+∞),都有f[f(x)-log2x]=3,若x0是方程f(x)-f′(x)=2的一个解,则x0可能存在的区间是(  )
A、(0,1)
B、(1,2)
C、(2,3)
D、(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x2-bx(b∈R),则下列结论正确的是(  )
A、?b∈R,f(x)在(0,+∞)上是增函数
B、?b∈R,f(x)在(0,+∞)上是减函数
C、?b∈R,f(x)为奇函数
D、?b∈R,f(x)为偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,已知a1=2,且a2,a1+a3,a4成等差数列.
(Ⅰ)求数列{an}的通项公式an
(Ⅱ)求数列{log2an-an}的前n项和为Sn
(Ⅲ) 设bn=
1
log2an+1log2an
,求证:b1+b2+…+bn
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(x+
π
3
)cosx.
(1)求f(x)的值域;
(2)设△ABC的内角A、B、C所对的边分别为a、b、c,已知A为锐角,f(A)=
3
2
,b=2,c=3,求cos(A-B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某单位从一所学校招收某类特殊人才.对20位已经选拔入围的学生进行运动协调能力和逻辑思维能力的测试,其测试结果如下表:
逻辑思维能力
运动协调能力
一般 良好 优秀
一般 2 2 1
良好 4 b 1
优秀 1 3 a
例如表中运动协调能力良好且逻辑思维能力一般的学生是4人.由于部分数据丢失,只知道从这20位参加测试的学生中随机抽取一位,抽到逻辑思维能力优秀的学生的概率为
1
5

(Ⅰ)求a,b的值;
(Ⅱ)从运动协调能力为优秀的学生中任意抽取2位,求其中至少有一位逻辑思维能力优秀的学生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l与抛物线x2=4y相交于A,B两点,且与圆(y-1)2+x2=1相切.
(Ⅰ)求直线l在y轴上截距的取值范围;
(Ⅱ)设F是抛物线的焦点,且
FA
FB
=0,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
2+x
x-1
的定义域为集合A,关于x的不等式(
1
2
)
2x
>2-a-x,(a∈R)的解集为B,
(1)分别求出集合A、B;
(2)求使A∩B=B的实数a的取值范围.

查看答案和解析>>

同步练习册答案