精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
甲,乙,丙三位学生独立地解同一道题,甲做对的概率为,乙,丙做对的概率分别为 (),且三位学生是否做对相互独立.记为这三位学生中做对该题的人数,其分布列为:


0
1
2
3





(1) 求至少有一位学生做对该题的概率;
(2) 求的值;
(3) 求的数学期望.

(1) (2)  ,(3)

解析试题分析:设“甲做对”为事件,“乙做对”为事件,“丙做对”为事件,由题意知,
.  
(1)由于事件“至少有一位学生做对该题”与事件“”是对立的,
所以至少有一位学生做对该题的概率是.
(2)由题意知,            ,  
整理得 .
,解得.   
(3)由题意知

=
的数学期望为=.
考点:相互独立事件概率及离散型随机变量分布列期望
点评:在求解关于分布列题目的时候,首要分析清楚随机变量取各值时对应的事件,再代入相应的计算公式求解,本题还考查数据处理、推理论证、运算求解能力和应用意识,以及或然与必然的数学思想

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

现有甲、乙两个靶。某射手向甲靶射击一次,命中的概率为,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为,每命中一次得2分,没有命中得0分。该射手每次射击的结果相互独立。假设该射手完成以上三次射击。
(Ⅰ)求该射手恰好命中一次的概率;
(Ⅱ)求该射手的总得分X的分布列及数学期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知甲盒内有大小相同的1个红球和3个黑球, 乙盒内有大小相同的2个红球和4个黑球,现从甲、乙两个盒内各任取2个球.
(Ⅰ)求取出的4个球均为黑球的概率;
(Ⅱ)求取出的4个球中恰有1个红球的概率;
(Ⅲ)设为取出的4个球中红球的个数,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)一厂家向用户提供的一箱产品共件,其中有件次品,用户先对产品进行抽检以决定是否接收.抽检规则是这样的:一次取一件产品检查(取出的产品不放回箱子),若前三次没有抽查到次品,则用户接收这箱产品;若前三次中一抽查到次品就立即停止抽检,并且用户拒绝接收这箱产品.
(Ⅰ)求这箱产品被用户接收的概率;
(Ⅱ)记抽检的产品件数为,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知射手甲射击一次,命中9环(含9环)以上的概率为0.56,命中8环的概率为0.22,命中7环的概率为0.12.
①求甲射击一次,命中不足8环的概率.
②求甲射击一次,至少命中7环的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)甲、乙等五名环保志愿者被随机地分到四个不同的岗位服务,每个岗位至少有一名志愿者.
(1)求甲、乙两人同时参加岗位服务的概率;
(2)求甲、乙两人不在同一个岗位服务的概率;
(3)设随机变量为这五名志愿者中参加岗位服务的人数,求的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
是常数,关于的一元二次方程有实数解记为事件
(1)若表示投掷两枚均匀骰子出现的点数,求
(2)若,求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

甲、乙两个盒子里各放有标号为1,2,3,4的四个大小形状完全相同的小球,从甲盒中任取一小球,记下号码后放入乙盒,再从乙盒中任取一小球,记下号码.
(Ⅰ)求的概率;
(Ⅱ)设随机变量,求随机变量的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)设有关于的一元二次方程.
(1)若是从0,1,2,3四个数中任取的一个数,是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;
(2)若是从区间[0,3]任取的一个数,是从区间[0,2]任取的一个数,求上述方程有实根的概率.

查看答案和解析>>

同步练习册答案