精英家教网 > 高中数学 > 题目详情

已知射手甲射击一次,命中9环(含9环)以上的概率为0.56,命中8环的概率为0.22,命中7环的概率为0.12.
①求甲射击一次,命中不足8环的概率.
②求甲射击一次,至少命中7环的概率.

(1)甲射击一次,命中不足8环的概率是0.22.
(2)甲射击一次,至少命中7环的概率为0.9.

解析试题分析:记“甲射击一次,命中7环以下”为事件,“甲射击一次,命中7环”为事件,由于在一次射击中,不可能同时发生,故是互斥事件,
(1)“甲射击一次,命中不足8环”的事件为
由互斥事件的概率加法公式,
答:甲射击一次,命中不足8环的概率是0.22.
(2)方法1:记“甲射击一次,命中8环”为事件,“甲射击一次,命中9环(含9环)以上”为事件,则“甲射击一次,至少命中7环”的事件为

答:甲射击一次,至少命中7环的概率为0.9.
方法2:∵“甲射击一次,至少命中7环”为事件
=1-0.1=0.9.
答:甲射击一次,至少命中7环的概率为0.9.
考点:本题主要考查互斥事件、对立事件的概念及其概率计算。
点评:中档题,本题解法较多。(2)解法二利用了对立事件概率公式,较为简洁。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

为了保养汽车,维护汽车性能,汽车保养一般都在购车的4S店进行,某地大众汽车4S店售后服务部设有一个服务窗口专门接待保养预约。假设车主预约保养登记所需的时间互相独立,且都是整数分钟,对以往车主预约登记所需的时间统计结果如下:

登记所需时间(分)
1
2
3
4
5
频率
0.1
0.4
0.3
0.1
0.1
从第—个车主开始预约登记时计时(用频率估计概率),
(l)估计第三个车主恰好等待4分钟开始登记的概率:
(2)X表示至第2分钟末已登记完的车主人数,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某校设计了一个实验考查方案:考生从道备选题中一次性随机抽取道题,按照题目要求独立完成全部实验操作.规定:至少正确完成其中道题的便可通过.已知道备选题中考生甲有道题能正确完成,道题不能完成;考生乙每题正确完成的概率都是,且每题正确完成与否互不影响.
(1)求甲、乙两考生正确完成题数的概率分布列,并计算其数学期望;
(2)请分析比较甲、乙两考生的实验操作能力.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了参加贵州省高中篮球比赛,某中学决定从四个篮球较强的班级的篮球队员中选出人组成男子篮球队,代表该地区参赛,四个篮球较强的班级篮球队员人数如下表:

班级
高三()班
高三()班
高二()班
高二()班
人数
12
6
9
9
(Ⅰ)现采取分层抽样的方法从这四个班中抽取运动员,求应分别从这四个班抽出的队员人数;
(Ⅱ)该中学篮球队奋力拼搏,获得冠军.若要从高三年级抽出的队员中选出两位队员作为冠军的代表发言,求选出的两名队员来自同一班的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球,现从甲、乙两个盒内各任取2个球.
(Ⅰ)求取出的4个球中恰有1个红球的概率;
(Ⅱ)设“从甲盒内取出的2个球恰有1个为黑球”为事件A;“从乙盒内取出的2个球都是黑球”为事件B,求在事件A发生的条件下,事件B发生的概率;
(Ⅲ)设为取出的4个球中红球的个数,求的分布列和数学期望。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
甲,乙,丙三位学生独立地解同一道题,甲做对的概率为,乙,丙做对的概率分别为 (),且三位学生是否做对相互独立.记为这三位学生中做对该题的人数,其分布列为:


0
1
2
3





(1) 求至少有一位学生做对该题的概率;
(2) 求的值;
(3) 求的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知箱中装有4个白球和5个黑球,且规定:取出一个白球的2分,取出一个黑球的1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出3球所得分数之和.
(Ⅰ)求X的分布列;
(Ⅱ)求X的数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题14分)口袋内有)个大小相同的球,其中有3个红球和个白球.已知从
口袋中随机取出一个球是红球的概率是,且。若有放回地从口袋中连续地取四次球(每次只取一个球),在四次取球中恰好取到两次红球的概率大于
(Ⅰ)求
(Ⅱ)不放回地从口袋中取球(每次只取一个球),取到白球时即停止取球,记为第一次取到白球时的取球次数,求的分布列和期望

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分 )袋中有大小相同的红、黄两种颜色的球各1个,从中任取1只,有放回地抽取3次.求:
(1)3只全是红球的概率;
(2)3只颜色全相同的概率;
(3)3只颜色不全相同的概率。

查看答案和解析>>

同步练习册答案