精英家教网 > 高中数学 > 题目详情

现有甲、乙两个靶。某射手向甲靶射击一次,命中的概率为,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为,每命中一次得2分,没有命中得0分。该射手每次射击的结果相互独立。假设该射手完成以上三次射击。
(Ⅰ)求该射手恰好命中一次的概率;
(Ⅱ)求该射手的总得分X的分布列及数学期望EX.

(1)
(2)

X
0
1
2
3
4
5
P






EX=0×+1×+2×+3×+4×+5×=.

解析试题分析:解:(Ⅰ)
(Ⅱ)的可能取值为:0,1,2,3,4,5
,

X
0
1
2
3
4
5
P






EX=0×+1×+2×+3×+4×+5×=.
考点:独立事件概率公式运用
点评:主要是考查了分布列的求解和运用,以及独立事件概率的乘法公式,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某射手击中目标的概率为0.8,每次射击的结果相互独立,现射击10次,问他最有可能射中几次?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

哈尔滨市第一次联考后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为

 
优秀
非优秀
合计
甲班
10
 
 
乙班
 
30
 
    合计
 
 
110
(1)请完成上面的列联表;
(2)根据列联表的数据,若按99.9%的可靠性要求,能否认为“成绩与班级有关系”;
(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号。试求抽到9号或10号的概率。
参考公式与临界值表:

0.100
0.050
0.025
0.010
0.001

2.706
3.841
5.024
6.635
10.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

甲、乙两人在罚球线互不影响地投球,命中的概率分别为,投中得1分,投不中得0分.
(1)甲、乙两人在罚球线各投球一次,求两人得分之和的数学期望;
(2)甲、乙两人在罚球线各投球二次,求甲恰好比乙多得分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了保养汽车,维护汽车性能,汽车保养一般都在购车的4S店进行,某地大众汽车4S店售后服务部设有一个服务窗口专门接待保养预约。假设车主预约保养登记所需的时间互相独立,且都是整数分钟,对以往车主预约登记所需的时间统计结果如下:

登记所需时间(分)
1
2
3
4
5
频率
0.1
0.4
0.3
0.1
0.1
从第—个车主开始预约登记时计时(用频率估计概率),
(l)估计第三个车主恰好等待4分钟开始登记的概率:
(2)X表示至第2分钟末已登记完的车主人数,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

甲有一个箱子,里面放有x个红球,y个白球(xy≥0,且x+y=4);乙有一个箱子,里面放有2个红球,1个白球,1个黄球.现在甲从箱子里任取2个球,乙从箱子里任取1个球.若取出的3个球颜色全不相同,则甲获胜.
(1)试问甲如何安排箱子里两种颜色球的个数,才能使自己获胜的概率最大?
(2)在(1)的条件下,求取出的3个球中红球个数的期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

从编号为1,2,3,4,5的五个形状大小相同的球中,任取2个球,求:(1)取到的这2个球编号之和为5的概率;(2)取到的这2个球编号之和为奇数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

甲、乙两人独立地破译1个密码, 他们能译出密码的概率分别为, 求:
(1)甲、乙两人至少有一个人破译出密码的概率;   
(2)两人都没有破译出密码的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
甲,乙,丙三位学生独立地解同一道题,甲做对的概率为,乙,丙做对的概率分别为 (),且三位学生是否做对相互独立.记为这三位学生中做对该题的人数,其分布列为:


0
1
2
3





(1) 求至少有一位学生做对该题的概率;
(2) 求的值;
(3) 求的数学期望.

查看答案和解析>>

同步练习册答案