精英家教网 > 高中数学 > 题目详情

已知函数.
(1)求;
(2)求上的取值范围.

(1)1,(2).

解析试题分析:(1)直接代入求解:,注意特殊角对应的三角函数值,(2)研究三角函数值域,先将三角函数化为基本三角函数,这时要用到两角和与差正弦公式及配角公式,目的就是将所研究的函数化为形如:型,因为,所以再研究函数定义域,由,因而,所以的取值范围是.
试题解析:解:
(1)                1分
                2分
                3分
                4分
(2)                6分
                8分
因为
所以                10分
所以                12分
所以的取值范围是                13分
考点:三角函数性质

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知向量,函数的最小正周期为.
(1)求的值;
(2)设的三边满足:,且边所对的角为,若关于的方程有两个不同的实数解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量,定义函数f(x)=·.
(1)求函数f(x)的表达式,并指出其最大值和最小值;
(2)在锐角△ABC中,角ABC的对边分别为abc,且f(A)=1,bc=8,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求函数的最小正周期;
(2)求函数在区间上的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的最大值为,最小值为.
(1)求的值;
(2)已知函数,当时求自变量x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数的部分图象如图所示。

(1)求的最小正周期及解析式;
(2)设,求函数在区间上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求的值及函数的单调递增区间;
(2)求函数在区间上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)已知,求的值;
(2)已知,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,0<φ<)的周期为π,且图象上有一个最低点为M.
(1)求f(x)的解析式;
(2)求函数y=f(x)+f的最大值及对应x的值.

查看答案和解析>>

同步练习册答案