精英家教网 > 高中数学 > 题目详情

已知函数.
(1)求函数的最小正周期;
(2)求函数在区间上的最小值和最大值.

(1);(2)的最小值为的最大值为.

解析试题分析:本题主要考查降幂公式、诱导公式、两角和的正弦公式、三角函数的周期、三角函数的最值等基础知识,考查数形结合思想,考查学生的计算能力.第一问,利用降幂公式、诱导公式、两角和的正弦公式化简表达式,使之得到的形式,再利用求函数周期;第二问,将代入,先求出的范围,再数形结合求出的范围,从而得到的最大值和最小值.
试题解析:(1)∵
.              7分
(2)∵,∴
.
,即时,的最小值为
,即时,的最大值为.            -13分
考点:降幂公式、诱导公式、两角和的正弦公式、三角函数的周期、三角函数的最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设△ABC三个内角A、B、C所对的边分别为a,b,c. 已知C=,acosA=bcosB.
(1)求角A的大小;
(2)如图,在△ABC的外角∠ACD内取一点P,使得PC=2.过点P分别作直线CA、CD的垂线PM、PN,垂足分别是M、N.设∠PCA=α,求PM+PN的最大值及此时α的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图像过点,且b>0,又的最大值为.
(1)将写成含的形式;
(2)由函数y =图像经过平移是否能得到一个奇函数y =的图像?若能,请写出平移的过程;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)=sinxcosx(x∈R).
(1)求函数f(x)的最小正周期;
(2)求函数f(x)的最大值,并指出此时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知的最小正周期为.
(1)当时,求函数的最小值;
(2)在,若,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,的最大值为2.
(1)求函数上的值域;
(2)已知外接圆半径,角所对的边分别是,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求;
(2)求上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数)的最小正周期为
(1)求函数的单调增区间;
(2)将函数的图象向左平移个单位,再向上平移1个单位,得到函数的图象;若上至少含有10个零点,求b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在平面直角坐标系xOy中,以Ox轴为始边作两个锐角α、β,它们的终边分别与单位圆相交于A、B两点.已知A、B的横坐标分别为.求:
 
(1) tan(α+β)的值;
(2) α+2β的值.

查看答案和解析>>

同步练习册答案