精英家教网 > 高中数学 > 题目详情
10.已知向量 $\overrightarrow{a}$=(cosα,sinα),$\overrightarrow{b}$=(cosβ,sinβ),|$\overrightarrow{a}$-$\overrightarrow{b}$|=1.
(1)求cos(α-β)的值; 
(2)若$-\frac{π}{2}<β<0<α<\frac{π}{2}$,且$sinβ=-\frac{1}{7}$,求sinα的值.

分析 (1)根据求向量的模的方法,同角三角函数的基本关系,两角差的三角公式,求得cos(α-β)的值.
(2)利用同角三角函数的基本关系求得cosβ、sin(α-β)的值,再利用两角和差的三角公式求得sinα=sin[(α-β)+β]的值.

解答 解:(1)∵向量 $\overrightarrow{a}$=(cosα,sinα),$\overrightarrow{b}$=(cosβ,sinβ),|$\overrightarrow{a}$-$\overrightarrow{b}$|=1,$\overrightarrow{a}$-$\overrightarrow{b}$=(cosα-cosβ,sinα-sinβ),
∴(cosα-cosβ)2+(sinα-sinβ)2=2-2(cosαcosβ+sinαsinβ)=2-2cos(α-β)=1,
∴cos(α-β)=$\frac{1}{2}$.
(2)若$-\frac{π}{2}<β<0<α<\frac{π}{2}$,且$sinβ=-\frac{1}{7}$,∴cosβ=$\sqrt{{1-sin}^{2}β}$=$\frac{4\sqrt{3}}{7}$.
∵cos(α-β)=$\frac{1}{2}$,∴sin(α-β)=$\frac{\sqrt{3}}{2}$,
∴sinα=sin[(α-β)+β]=sin(α-β)cosβ+cos(α-β)sinβ=$\frac{\sqrt{3}}{2}$•$\frac{4\sqrt{3}}{7}$+$\frac{1}{2}$•$\frac{1}{7}$=$\frac{13}{14}$.

点评 本题主要考查求向量的模的方法,同角三角函数的基本关系,两角和差的三角公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知函数y=2sinωx(ω>0)的图象与直线y=-2的相邻的两个公共点之间的距离为$\frac{2π}{3}$,则ω的值为(  )
A.$\frac{1}{3}$B.$\frac{3}{2}$C.3D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知f(x)=|x-1|+|x+a|,g(a)=a2-a-2.
(1)当a=3,解关于x的不等式f(x)>g(a)+2;
(2)当x∈[-a,1)时恒有f(x)≤g(a),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知关于x的不等式 alnx>1-$\frac{1}{x}$对任意x∈(1,+∞)恒成立,则实数a的取值范围是[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知α为锐角,且$sinα=\frac{4}{5}$,则cos(π-α)=(  )
A.$-\frac{3}{5}$B.$\frac{3}{5}$C.$-\frac{4}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设函数f(x)=(x+2)ex
(1)求f(x)的单调区间;
(2)当x≥0时,恒有$\frac{f(x)-{e}^{x}}{ax+1}$≥1,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知抛物线y2=4x的焦点F与椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的一个焦点重合,它们在第一象限内的交点为P,且PF与x轴垂直,则椭圆的离心率为(  )
A.$\sqrt{3}-\sqrt{2}$B.$\sqrt{2}-1$C.$\frac{1}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知某厂每天的固定成本是20000元,每天最大规模的产品量是360件.每生产一件产品,成本增加100元,生产x件产品的收入函数是R(x)=-$\frac{1}{2}{x^2}$+400x,记L(x),P(x)分别为每天的生产x件产品的利润和平均利润(平均利润=$\frac{总利润}{总产量}$)
(1)每天生产量x为多少时,利润L(x)有最大值,并求出最大值;
(2)每天生产量x为多少时,平均利润P(x)有最大值,并求出最大值;
(3)由于经济危机,该厂进行了裁员导致该厂每天生产的最大规模的产品量降为160件,那么每天生产量x为多少时,平均利润P(x)有最大值,并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知cos(α+β)=$\frac{4}{5}$,cos(α-β)=-$\frac{4}{5}$,且α+β∈($\frac{7π}{4}$,2π),α-β∈($\frac{3π}{4}$,π),求cos2α和cos2β的值.

查看答案和解析>>

同步练习册答案