分析 (1)通过讨论x的范围,得到关于x的不等式组,解出即可;(2)求出f(x)的单调性,从而求出f(x)的最小值即可.
解答 解:(1)f(x)≤5,即|2x-1|+x+3≤5,
故$\left\{\begin{array}{l}{2x-1≥0}\\{2x-1+x+3≤5}\end{array}\right.$或$\left\{\begin{array}{l}{2x-1<0}\\{1-2x+x+3≤5}\end{array}\right.$,
解得:-1≤x≤1,
故不等式的解集是{x|-1≤x≤1};
(2)∵f(x)=$\left\{\begin{array}{l}{3x+2,x≥\frac{1}{2}}\\{-x+4,x<\frac{1}{2}}\end{array}\right.$,
∴f(x)在(-∞,$\frac{1}{2}$)递减,在($\frac{1}{2}$,+∞)递增,
∴f(x)最小值=f($\frac{1}{2}$)=$\frac{7}{2}$.
点评 本题考查了解绝对值不等式问题,考查函数的单调性以及分类讨论思想,是一道基础题.
科目:高中数学 来源: 题型:选择题
| y1 | y2 | 总计 | |
| x1 | a | b | a+b |
| x2 | c | d | c+d |
| 总计 | a+c | b+d | a+b+c+d |
| A. | 越大 | B. | 越小 | C. | 无法判定 | D. | 以上均不对 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 18 | B. | $12+8\sqrt{2}$ | C. | $12+2\sqrt{2}$ | D. | $12+4\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 10π | B. | $\frac{31}{3}$π | C. | $\frac{32}{3}$π | D. | 11π |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com