精英家教网 > 高中数学 > 题目详情
18.已知$\frac{2}{x}+\frac{8}{y}$=1(x>0,y>0),则2x+y的最小值为(  )
A.18B.$12+8\sqrt{2}$C.$12+2\sqrt{2}$D.$12+4\sqrt{2}$

分析 利用基本不等式的性质即可得出.

解答 解:$2x+y=({2x+y})({\frac{2}{x}+\frac{8}{y}})=12+\frac{2y}{x}+\frac{16x}{y}≥12+8\sqrt{2}$,当且仅当x=2+2$\sqrt{2}$,y=8+4$\sqrt{2}$取等号,
所以2x+y的最小值为12+8$\sqrt{2}$,
故选:B.

点评 本题考查了基本不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知f(x)=x2-2|x|(x∈R).
(1)若方程f(x)=kx有三个解,试求实数k的取值范围;
(2)是否存在实数m,n(m<n),使函数f(x)的定义域与值域均为[m,n]?若存在,求出所有的区间[m,n],若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知三个对数函数:y=logax,y=logbx,y=logcx,它们分别对应如图中标号为①②③三个图象  则a、b、c的大小关系是(  )
A.a<b<cB.b<a<cC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.6名运动员站在6条跑道上准备参加比赛,其中甲不能站在第一道也不能站在第二道,乙必须站在第五或第六道,则不同的排法共有144种.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.阅读程序框图,输出的结果是(  )
A.AB.BC.CD.D

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=|2x-1|+x+3,
(1)解不等式f(x)≤5; 
 (2)求函数y=f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=lnx+$\frac{b}{x+1}({b>0})$,对任意x1,x2∈[1,2],x1≠x2,都有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}$<-1,则实数b的取值范围是$({\frac{27}{2},+∞})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知g(x)是定义在R上的奇函数,若函数f(x)=$\frac{2|x|+g(x)+2}{|x|+1}$(x∈R)有最大值为M,最小值为m,则M+m=(  )
A.$\frac{1}{2}$B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知曲线f(x)=xsinx+1在点(${\frac{π}{2}$,${\frac{π}{2}$+1)处的切线与直线ax-y+1=0互相垂直,则实数a=-1.

查看答案和解析>>

同步练习册答案