精英家教网 > 高中数学 > 题目详情
3.如图,在正四棱锥P-ABCD中,AB=2$\sqrt{3}$,侧面积为8$\sqrt{3}$,则它的体积为(  )
A.4B.8C.12πD.16π

分析 作PO⊥平面ABCD,取BC中点E,连结OE,PE,求出PE=2,从而PO=1,由此能求出正四棱锥P-ABCD的体积.

解答 解:作PO⊥平面ABCD,取BC中点E,连结OE,PE,
∵正四棱锥P-ABCD中,AB=2$\sqrt{3}$,侧面积为8$\sqrt{3}$,
∴O是四边形ABCD的中点,E是BC的中点,PE⊥BC,
4×$\frac{1}{2}$BC×PE=8$\sqrt{3}$,解得PE=2,
∴PO=$\sqrt{P{E}^{2}-O{E}^{2}}$=$\sqrt{4-3}$=1,
∴正四棱锥P-ABCD的体积V=$\frac{1}{3}×{S}_{正方形ABCD}×PO$
=$\frac{1}{3}×2\sqrt{3}×2\sqrt{3}×1$=4.
故选:A.

点评 本题考查正四棱锥的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.求不等式2cos($\frac{x}{2}$-$\frac{π}{4}$)>$\sqrt{3}$的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=|x-a|,若不等式f(x)≤3的解集为{|x|-1≤x≤5}.
(Ⅰ)求实数a的值:
(Ⅱ)若不等式f(3x)+f(x+3)≥m对一切实数x恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知数列{an}是各项均不为零的等差数列,Sn为其前n项和,且${a_n}=\sqrt{{S_{2n-1}}}$(n∈N*).若不等式$\frac{{λ{{(-1)}^n}}}{a_n}≤\frac{{n+2{{(-1)}^{n+1}}}}{n}$对任意n∈N*恒成立,则实数λ的取值范围是[-3,0].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若椭圆C1:$\frac{{x}^{2}}{{{a}_{1}}^{2}}$+$\frac{{y}^{2}}{{{b}_{1}}^{2}}$=1(a1>b1>0)和椭圆C2:$\frac{{x}^{2}}{{{a}_{2}}^{2}}$+$\frac{{y}^{2}}{{{b}_{2}}^{2}}$=1(a2>b2>0)的焦点相同且a1>a2.给出如下四个结论:
①椭圆C1与椭圆C2一定没有公共点        
②$\frac{{a}_{1}}{{a}_{2}}$>$\frac{{b}_{1}}{{b}_{2}}$
③a12-a22=b12-b22
④a1-a2=b1-b2
其中所有正确结论的序号是(  )
A.①②③B.①③④C.①②④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知正方体的表面积为24,则该正方体的体积为(  )
A.8B.27C.64D.125

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.一种专门侵占内存的计算机病毒,开机时占据内存2KB,然后每3分钟自身复制一次,复制后所占内存是原来的2倍,若该病毒占据64MB内存(1MB=210KB),则开机后经过(  )分钟.
A.45B.44C.46D.47

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图给出的是计算$\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+…+\frac{1}{18}$的值的一个程序框图,其中判断框内应填入的条件是(  )
A.i>9B.i<9C.i>18D.i<18

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知集合A={1,t,2t},B={1,t2},若B⊆A,则实数t=2.

查看答案和解析>>

同步练习册答案